
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 13(2), 121-129 (2007)

GSSIM – Grid Scheduling Simulator

Krzysztof Kurowski 1, Jarek Nabrzyski 1
Ariel Oleksiak 1, Jan Weglarz 2

1Poznan Supercomputing and Networking Center

e-mail: {krzysztof.kurowsk/naber/ariel}@man.poznan.pl
2Institute of Computing and Management Sciences

Poznan University of Technology
jan.weglarz@cs.put.poznan.pl

(Rec: November 26, 2007)

Abstract: Grid simulation tools provide frameworks for simulating application scheduling in various Grid infrastructures. However,
while experimenting with many existing tools, we have encountered two main shortcomings: (i) there are no tools for generating
workloads, resources and events; (ii) it is difficult and time consuming to model different Grid levels, i.e. resource brokers, and local
level scheduling systems. In this paper we present the Grid Scheduling Simulator (GSSIM), a framework that addresses these
shortcomings and provides an easy-to-use Grid scheduling framework for enabling simulations of a wide range of scheduling algorithms
in multi-level, heterogeneous Grid infrastructures. In order to foster more collaboration in the community at large, GSSIM is
complemented with a portal (http://www.gssim.org) that provides a repository of Grid scheduling algorithms, synthetic workloads and
benchmarks for use with GSSIM.
Key words: Grid scheduling, resource management

I. INTRODUCTION

 Grid scheduling algorithms have been a subject of in-
tense research over the last decade [13] and [14]. However,
evaluation and comparative analysis of these algorithms
and research experiments are often difficult to perform.
This is caused by many problems, including, for example,
difficulties in obtaining exclusive access to large scale
infrastructures for research purposes or lack of certain
functionalities of real resource management systems, such
as advance reservation (AR) or Grid user accounting.
Therefore, Grid scheduling algorithms have been often
tested in simulation environments.
 Nevertheless, in order to perform a reliable simulation
experiment researchers must cope with several issues.
Workloads usually come from single and often independent
local clusters, collected under specific conditions, and do
not contain information about workflows, co-allocation
requests etc. Additionally, available simulation environ-
ments usually do not allow simulating multiple autono-
mous scheduling elements, such as Grid and local schedul-
ers. As a consequence of all these problems researchers
have a limited chance to reuse and compare results of their
analysis.

 Therefore, we expect from a simulation environment to
provide flexible and easy way to describe, generate and
share input data to experiments. The generator should
enable generation of workload and resources including
different probability distributions in specific time periods,
correlations between attributes, etc. To ensure intero-
perability a simulation environment must support standard
workload formats and enable relatively easy replacement of
job and resource descriptions. Furthermore, to make the
simulation environment more similar to realistic behavior
resource failure generation should be included.
 The second group of requirements is related to an
architecture and a generic model that should enable
building multilevel environments and using various
scheduling strategies with diverse granularity and scope. In
particular, researchers should be able to build architectures
consisting of two tiers in order to insert scheduling
algorithms both to local schedulers and grid brokers.
Additionally, simulator should provide means to schedule
various types of applications: from processes of single
tasks (e.g. MPI applications) up to the whole workflows. It
is also important to support features such as simulation of
network, performance estimations (with possible pre-
defined errors), and custom calculation of execution time.

user
Tekst maszynowy
CMST 13(2) 121-129 (2007)

user
Tekst maszynowy
DOI:10.12921/cmst.2007.13.02.121-129

user
Tekst maszynowy

user
Tekst maszynowy

K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Węglarz 122

In this paper, we attempt to address these issues and
propose Grid Scheduling SIMulator (GSSIM) built on top
of GridSim [1]. GSSIM has been designed as a simulation
framework which enables easy-to-use experimental studies
of various scheduling algorithms and meet requirements
listed above. The workloads used are compliant with
known workload formats such as Standard Workload
Format (SWF) [2] and Grid Workload Format (GWF) [3].
 To enable sharing of the workloads, algorithms and
results, we propose a GSSIM portal [15] where researchers
may download various synthetic workloads, resource
descriptions, scheduling plugins, and results [15]. This
portal complements other known websites related to this
area since it provides a repository of synthetic workloads,
including the online services for generation of workloads,
and scheduling plugins.
 The remaining part of the paper is organized as follows.
In Section II the related work is presented. Section III
presents an overall GSSIM architecture. In Section IV we
explained how workloads and resources are modeled.
Section V contains a description of the interfaces needed to
implement scheduling algorithms.In Section VI an example
of GSSIM use for the simulation of a simple scheduling
problem is illustrated. Section VII concludes this paper.

II. RELATED WORK

 Due to the complexity and costs of building and
operating Grid testbeds, extensive research has been
conducted in the area of computer-based simulation tools.
A comprehensive taxonomy for design of simulation tools
to model large and distributed systems has been presented
in [4]. One of many categories, called Grid Scheduling
Systems, was identified. Four simulation tools: Bricks,
MicroGrid, SimGrid and GridSim were classified into this
category. Bricks [5] simulates various behaviors of Grid
computing systems such as the behavior of networks and
resource scheduling algorithms. However, Grid environ-
ments modeled by Bricks are based on a relatively simple
client-server architecture typical, for instance, of distrib-
uted systems providing a remote access to scientific
libraries and packages running on high-performance
computers. The second tool, called MicroGrid [6] was
classified as an emulator and (not a simulator). SimGrid [7]
aims at providing the right model and level of abstraction
for studying Grid-based scheduling algorithms and
generates correct and accurate results but it offers fewer
simulation capabilities compared to GridSim. Looking at
a classification given in [4] it does not provide system
support such as in GridSim, its simulation engine is serial,

and is not object-oriented as it is implemented in C.
GridSim adopts the multi-layered design architecture and is
based on event simulation software called SimJava [8]. It
extends various SimJava packages to offer a high degree of
modeling and simulation of heterogeneous Grid resources
(both time- and space- shared), users, applications, brokers
and schedulers in a Grid computing environment. It is
worthy of note that GridSim also supports simulation of
Advance Reservation (AR) mechanisms [9]. Moreover, the
latest version contains comprehensive support for simulat-
ing data Grids and market models, such as auctions.
However, it contains neither language-based design envi-
ronment nor workload generation system support [4].
Although many simulation tools have been built, none of
them satisfied all our requirements especially concerning
experimental data generation and flexible development and
sharing of various both Grid- and local-level scheduling
plugins. This fact encouraged us to develop GSSIM using
some existing software components.
 In parallel to the development of simulation and
emulation tools, many projects have tried to tackle
problems around modeling synthetic and real workloads
and finally simulating them under various Grid environ-
ment assumptions. Probably the first detailed model of
parallel workloads was proposed by Feitelson in 1996 [10].
Since then, a lot of workload data have been collected [2],
analyzed and modeled [11]. Real traces on production
Grids are being collected [3] and have not yet become
widely available. Models for generating synthetic Grid
workloads, on the other hand, are still emerging and are
subject to further research. Therefore, we have designed
GSSIM in a way that enables researchers not only to create
and test various Grid and local level scheduling algorithms
but also to generate synthetic and adopt real workloads.

III. GSSIM ARCHITECTURE AND MODEL

 The GSSIM framework is based on GridSim and
SimJava2 packages. However, it provides a layer added on
top of the GridSim adding capabilities to enable easy and
flexible modeling of Grid scheduling components. GSSIM
also provides an advanced generator module using real and
synthetic workloads. The overall architecture of GSSIM is
illustrated in Fig. 1.
 GSSIM distinguishes between two types of scheduling
components: Grid brokers and resource providers. As
shown in Fig. 1 multiple scheduling strategies may be
plugged into both levels. Input data can be read from real
sources or generated using the generator module. The
major extensions of GridSim, namely input data modeling

GSSIM – Grid Scheduling Simulator 123

and scheduling interfaces, are described in the subsequent
sections.

Fig. 1. Generic GSSIM architecture

 One of the major GSSIM objectives is flexibility in
terms of using a variety of Grid scheduling strategies and
workloads. However, Grid jobs may have various shapes
and levels of complexity ranging from workflows, through
large-scale parallel applications, up to single tasks that
require single resources. Depending on type of Grid jobs,
scheduling strategies may have different scope and need
different input data. Therefore, to make development of
scheduling plugins easier on one hand and keep it flexible
on the other, we distinguish in GSSIM several levels of
information about incoming jobs. These levels are
presented in Fig. 2. We assumed that there is a queue of
jobs submitted to a Grid scheduler. Each job consists of
one or more tasks. Thus if preceding constraints are defined
a job may be a whole workflow. More details about
generation of this model and its application to implementa-

Fig. 2. Levels of information about jobs

tion of scheduling plugins are presented in Sections IV and
V, respectively.

IV. INPUT DATA MODELING

 In general, input data in GSSIM consist of workload
and resource descriptions. Users may both generate new or
read the existing synthetic data. Third party real workloads
can also be imported by GSSIM. If any parameters are
missing after importing a workload, they can be generated
by GSSIM and added.
 If synthetic workload and resource description are used,
for each generated parameter the following probabilistic
attributes and constraints can be specified: avg – mean
value, stdev – standard deviation, min, max – minimal and
maximal value, seed – seed for random process, distribu-
tion – probabilistic distribution, and startTime, endTime –
time period.
 The definition of a seed allows to obtain the same
random values in different experiments. The following dis-
tributions are currently implemented in GSSIM: constant,
normal, poisson, exponential and uniform.
 Description and generation of workload and resources
are presented in more detail in the following sections.

IV.1 Workload

 Workload contains information about jobs, their struc-
ture, resource requirements, relationships, time intervals
etc. We assumed a model in which each job consists of one
or more tasks. A job may contain preceding constraints
between tasks (workflow) as it was said in Section III. The
description of how this job model adopted is handled by the
scheduling interface is presented in Section V.1. The next
sections provide information on how workloads are
described and generated in GSSIM.

IV.1.1. Workload Description

 Generally, we can distinguish between two parts of the
workload description: a basic workload description using
Grid Workload Format (GWF) and extensions described in
XML files. The former is mostly needed by a core
simulator to perform simulations while the latter are input
data to scheduling algorithms (plugins). For instance,
a simulator must have some knowledge about task runtimes
to perform simulation correctly, while many scheduling
algorithms assume lack of this knowledge. On the other
hand, some parameters used by scheduling strategies such
as preferences of users are not needed by a core simulator.

K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Węglarz 124

 XML-based job descriptions are passed to scheduling
plugins. In order to describe job descriptions we adopted
formats used in GRMS [13]. We made this decision for two
main reasons. First, this schema is comprehensive enough
and it offers various extensions for workflows, time
constraints, user preferences and other useful information.
Secondly, this choice allows us to easily move algorithms
between our real Grid environments managed by GRMS
and simulation environment (GSSIM) minimizing amount
of code modifications. Thus, we can easily use the same
algorithms in practice, after modeling them on the simu-
lator.
 If researcher needs a synthetic workload he can use the
flexible GSSIM workload generation capability, presented
below.

IV.1.2. Workload Generation

 Parameters that characterize workload generation are
specified in the XML-based configuration file. This file
allows to define basic parameters such as job count, arrival
rate, task count, task runtimes, and simulation time.
Requirements concerning all these parameters can be
specified using attributes defined at the beginning of
Section 4. Definition of workload parameters using
independent distributions may result in non-realistic
workloads named in [12] as “naive”. For instance, in [11],
the authors argue that a Poisson distribution does not
sufficiently model a jobs arrival process since it does not
take into consideration daily cycles. To compensate for this
deficiency, the GSSIM workload generation file enables
defining different distributions in specific daytime periods.
For example, one can define two distributions: one for thr
day and one for the night. Another parameter whose
modeling is not trivial is runtime. A correlation of runtime
with task size (number of requested processors) was
discovered in several studies. Therefore, GSSIM provides
attributes that allow defining a correlation between runtime
and size. A simple linear dependency is used as shown in
the following formula:

() j jruntime s sα β= +

where sj is a size of a task j, α and β are parameters
given by a workload designer. Both parameters can be
defined by probabilistic attributes defined above.
 All these mechanisms allow users to generate synthetic
workloads. Of course, more complex methods are often
needed to model workloads accurately and realistically.
GSSIM tools provide an easy way to generate input data
for at least initial and high level evaluation of algorithms.
Moreover, these generated workloads may provide a basis
for further tuning in order to improve their quality. Finally,

the experiments conducted in [12] shown that a choice of
workload alone (e.g. real against synthetic one) does not
cause significant changes in the evaluation of scheduling
algorithms. Based on these observations we believe that the
GSSIM workload generation feature is an easy but also
useful and reliable way of providing input data for
scheduling experiments. Additionally, runtime calculation
plugins may be implemented to model runtimes in a more
complex way. These plugins return task runtime based on
parameters of available resources and a given task. This
capability allows taking into account the performance
models of applications and influence of heterogenous
resources on runtime.
 In addition to basic parameters of a workload, a GSSIM
user may also specify details of generation of other, more
complex elements. They include task preceding constraints
(in order to define workflows), hard constraints (to specify
resource requirements), soft constraints (to express users’
preferences), and time constraints (to define scheduling
requirements).

IV.2. Resources

 The second part of the input data that must be delivered
for simulations is the description of resources. In GSSIM, it
generally consists of two types of information: definitions
of resource providers (autonomous systems that represent
separate administrative domains) and network topology.
The former contains a structure and parameters of re-
sources, and information whether they support advance
reservation mechanisms. The latter basically defines
network links and their parameters. GSSIM also allows
defining the required characteristics of resource failures.
Similarly to a workload, resource descriptions may be both
provided by a developer or generated. In the latter case,
a resource description configuration file is used.

IV.2.1 Resource Description

 Resources in GSSIM are also described using an XML-
based format. The description contains definitions of all
resource providers available in an experiment. Each
resource provider consists of three main elements. First
element is a list of queues including their parameters, e.g.
priority, number of processors assigned to a queue, etc. The
second element includes collective information about
resources available at a given resource provider or
description of all single machines. Each description con-
tains information about resource parameters, e.g. number of
free CPUs, memory, etc. Finally, availability of AR me-
chanism is indicated in the description.

GSSIM – Grid Scheduling Simulator 125

 Since GSSIM supports two-level scheduling architec-
tures, in which local schedulers may have their own
scheduling strategies, the resource description also contains
information about assignment of specific algorithms
(plugins) to particular resource providers.
 As said above, GSSIM enables automatic generation of
resource descriptions. The generation process is similar to
that described in Section IV.1. The configuration file contains
a definition of parameters related to: the total number of
processors, amount of memory, number of queues and their
basic parameters such as priority, maximum number of jobs
etc. In addition, parameters concerning network connections
such as bandwidth and delay may be generated. For each
resource element, failure frequency can be specified (see
Section II.3 for more details).

IV.2.2. Generation of Failures

 In dynamic and cross-domain infrastructures such as
Grids resource failures are common events. Therefore, Grid
middleware should be able to correctly handle them. To
this end, tests of Grid scheduling algorithms should take
into account high probability of errors.
 GSSIM allows researchers to specify probability of
failure for every single resource. In more detail, for each
resource element in the configuration file one can specify
failure frequency ,τ which is defined as the expected
number of failures per time unit, and unavailability time

.μ The latter parameter allows to define the time during
which a resource is unavailable, e.g. time that resource
needs to recover from a failure. For instance, if τ =
0.000001 and μ = 100, a given resource will fail once
every 1 000 000 time units on average and its each period
of unavailability will take 100 time units on average.
 Based on the parameters in the configuration file a list
of resources’ unavailability is generated. Of course, the
generated list may be modified or even replaced by a list
given by a researcher, e.g. prepared on the basis of real
observations.
 When a resource fails it is removed from a list of
resources for a defined period of time and an appropriate
event is sent to the given local provider plugin (see Sec-
tion V). This functionality enables testing a reliability of
algorithms and should lead to development of more robust
and self-healing scheduling strategies.

V. SCHEDULING INTERFACE

 This section contains description of scheduling inter-
faces at Grid and local levels. Each scheduling plugin must
implement one of them.

V.1. Grid Scheduler

 This interface simulates an environment of a Grid sche-
duler. It provides all necessary information needed to
schedule jobs in Grids and imposes implementation of
basic functionality required from Grid schedulers.
 In general, the major methods of the interface
responsible for handling different types of events is sche-
dule, which performs scheduling when specific event occurs.
 This method enables implementing various scheduling
strategies: off-line scheduling for whole sets of incoming
jobs, dynamic scheduling based on specific events, periodic
rescheduling, etc. The following events relevant for Grid
scheduler have been considered in GSSIM: TIMER,
JOB_ARRIVED, TASK_FINISHED, TASK_FAILED,
TASK_CANCELED, RESOURCE_FAILED,
PROVIDER_FAILED, RESERVATION_ACTIVE,
RESERVATION_FINISHED, RESERVATION_FAILED.
Of particular importance are events TIMER and
JOB_ARRIVED that enable scheduling periodically and
whenever new jobs arrive, respectively. This interface
method returns scheduling decisions that contain informa-
tion about selected resources and, in case of scheduling
based on advance reservation, identifiers of reservations.
 Additionally, to make the development of plugins easier
and more focused, the following methods are available
according to the levels defined in Fig. 2: scheduleJobs,
scheduleJob, scheduleTasks, and scheduleTask. The advan-
tage of this method is that the authors of scheduling plugins
may choose at which level they implement their algorithm
(i.e. which method to override). For instance, if a sche-
duling algorithm is focused on matching single tasks to
resources, then only scheduleTask need to be implemented.
If an algorithm schedules all jobs at once only the
scheduleJobs method must be overwritten.
 In addition to the information about incoming jobs,
a Grid scheduler needs knowledge about the environment. In
GSSIM, Grid scheduling plugins have access to the infor-
mation about running jobs, resources, network topology,
reservations, and estimations of runtime and resource
requirements. A reservation entity provides information
about reservations and allows a Grid scheduling plugin to
request and negotiate specific reservations. Particular
strategies may use various levels of knowledge about
resources. Basic scheduling strategies base their decisions on
very limited information while more advanced algorithms
can apply knowledge about running jobs, performance
predictions, and network topology to schedule jobs ef-
ficiently. Grid scheduler may perform best-effort scheduling
based on available information about resources or apply
scheduling with QoS by negotiating offers from resource
providers.

K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Węglarz 126

V.2. Local Schedulers

 At the level of local schedulers there are two types of
interfaces distinguished in GSSIM. They correspond to two
different types of scheduling approaches in local systems.
The “basic” interface is based on a “best effort” approach
where tasks are submitted to local queues and no guarante
is given concerning the start time, resource availability, etc.
The second type assumes scheduling with QoS guarantees.
In this case, resource providers advertise and possibly
negotiate their offers and, if they are successful, reserve
requested resources for a certain period in the future using
advance reservation mechanisms. These both interfaces are
presented in the subsections below.

V.2.1. Basic Scheduling Interface

 This interface provides queue management mechanisms
for plugin developers. It consists of the following methods:
scheduleNewTasks, scheduleOnEvent, and scheduleCyclic.
scheduleNewTasks schedules the newly arrived tasks, i.e.
executes them or puts into a queue. scheduleCyclicis in-
voked periodically. In the scheduleOnEvent method a type
of an event is passed according to the list defined in
Section IV. Input data for scheduling methods of this
interface include a list of tasks being executed, queues, and
state of resources.

V.2.2. Interface for QoS-based Scheduling

 This interface provides advance reservation and
negotiation mechanisms for plugin developers. It distin
guishes initial and committed reservations. In this way it
enables development of reservation protocols based on

Table 1. Methods of the interface with QoS support

Methods Descriptions

getOffers Returns reservation offers based
on time and resource requirements

checkOffers Returns reservation offers based
on counteroffers from resource consumer

initReservation

Initially reserves a requested slot or
reject the request; if the reservation
is not committed before certain time
the initial reservation expires

commitReservation Commits reservation
or rejects the request

getStatus Returns status of reservation
cancelReservation Cancels a reservation

modifyReservation Decides whether the reservation
can be modified

submitTasks Executes tasks on reserved resources

two-phase commit. Major methods of the interface are pre-
sented in Table 1.
 Input data for scheduling methods of this interface
include a list of reservation requests, lists of existing
committed and initial reservations, tasks being executed,
queues, and state of resources. Additionally, time and re-
source requirements, and proposed offers are passed to
methods responsible for negotiations of reservations.
 Both interfaces described above are complementary to
each other which means that they can be used together in
a single resource provider. Their use and implementation
depends on specific scheduling strategies.

V.3. Scheduling Problems handled by GSSIM

 Using the interfaces and workloads presented above
GSSIM enables simulations of diverse scheduling
strategies applied to various types of applications. With
regard to classes of Grid level applications it is possible to
schedule according to the generic model presented in
Fig. 2. That means that GSSIM can simulate scheduling of
multiple independent tasks at once, parallel tasks, and
whole workflows. GSSIM also enable simulating of
various scheduling problems. In particular, both best-effort
and QoS-based approaches are available. To realize the
latter case, GSSIM supports negotiations between Grid
schedulers and resource providers, advance reservation
mechanism with two phase commit usage. Additionally,
GSSIM provides possibility of scheduling based on per-
formance estimations. These estimations can be generated
on the basis of runtimes included in the workload or using
custom algorithm implemented by researcher. At a local
level, a developer of a scheduling plugin has unlimited
access to queues and running tasks. Therefore, a variety of
both space- and time- sharing policies may be applied. For
instance, developers can implement algorithms based on
backfilling or preemption using arbitrary types of resources
can be scheduled (not only processors). Both shared and
distributed memory cases are supported.
 For each experiment detailed results are collected. They
contain many basic criteria commonly used in evaluation of
scheduling algorithms, e.g. makespan, mean task comple-
tion time, etc. One of possible scheduling experiments
together with obtained results is illustrated by a short
example given in the next section.

VI. EXAMPLE OF EXPERIMENT

 In this section we present an example of the simple
experiment conducted using the GSSIM framework. Its

GSSIM – Grid Scheduling Simulator 127

goal is to illustrate steps and elements needed to perform
simulations in GSSIM. The experiment is a test of two
basic algorithms on a Grid and local level: MPL and FCFS,
respectively. The former, Min–Parallel–Load (MPL), se-
lects a resource provider with the lowest parallel load per
processor (the sum of job sizes over number of available
processors), i.e.

 0min

kj r

j
j

k

S
MPL

p

=

==
∑

where kr is a number of tasks at resource provider k, kp
denotes a number of available processors, and js is a size
of task j, or a number of requested processors. The latter,
First Come First Served, allocates tasks to resources of
a local system in the order of their arrival. Both strategies
are algorithms commonly used for comparison purposes.
 Resources are delivered by two resource providers.
Each of them is controlled by a queueing system with
a single queue available. The generated workload consists
of 10 independent jobs.
 This section contains examples of the following ele-
ments of the experiment: workload description, resource
description, local scheduler plugin, Grid scheduler plugin,
and results.

VI.1. Workload Description

 GSSIM generates a workload that consists of 10 jobs.
Each task requires from 1 up to 4 processors where the
values are generated using a uniform distribution. To
generate a task length a normal distribution was used. The
task length denotes a number of operations needed to
perform to complete a task. It can be also interpreted as
a task runtime at a machine that performs a single operation
per one time unit. The arrival rate has a Poisson distri-
bution with an average equal to 50 time units.

VI.2. Resource Description

 For each resource provider a queueing system
containing a single queue is described. The first resource
provider provides access to a total number of 4 processors
while the second one to 8 processors. All the processors
provided by both providers have the same speed. None of
the defined resource providers supports advance reserva-
tion.

VI.3. Local Scheduler Plugin

 In this section a simple example of a local scheduler
plugin is presented. It implements FCFS algorithm, so if
a new task comes, the plugin algorithm either puts it at the

public int scheduleNewTasks (SubmittedTask[] newTasks,
List<SubmittedTask> inExecution,
Queue<SubmittedTask>[] queues,
Resource resource) {

Queue<SubmittedTask> queue = queues [0];
SubmittedTask task = newTasks[0];
Map freeRes = resource.getFreeResources(
 task.getResourceRequirements());
if (freeRes != null)
 inExecution.add(task);
else
 queue.add(task);
return 1;

Fig. 3. The scheduleNewTasks method of the local

scheduler plugin

end of a queue or, if there are free resources that meet
resource requirements, executes the task. If any task has
finished, plugin tries to execute subsequent tasks from
a queue. To this end two methods must be implemented:
scheduleNewTasks and scheduleOnEvent. A simplified ver-
sion of the former is presented in Fig. 3.

VI.4. Grid Scheduler Plugin

The last element of the experiment is a Grid scheduler
plugin. It corresponds to an algorithm of Grid scheduler. It
applies simple MPL strategy, which assigns every task to
a resource provider that has the lowest sum of task sizes
over number of available processors.

VI.5. Results

 In this example a set of 10 tasks has been generated.
Basic characteristics are presented in the table in Fig. 4.
 Applying the scheduling strategies analytically to this
set of tasks led to the schedules illustrated below the table
in Fig. 4.

Task T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Size 2 4 1 3 1 2 4 3 1 1

Length 1079 1401 1396 2127 1322 1195 2329 2063 818 1078

Arrival 0 36 134 191 253 272 316 394 447 439

Fig. 4. Schedules of tasks in the example

 Major statistics collected during this GSSIM experi-
ment are as follows: Job start time = 969.9, Job completion

K. Kurowski, J. Nabrzyski, A. Oleksiak, J. Węglarz 128

time = 2504.7, Job execution time = 1534.8, Job waiting
time = 923, Makespan = 3904, Resources total load = 0.92,
and Resources queue length = 0.48. In addition to mean
values presented above, for each of parameters multiple
statistical measures are calculated: standard deviation,
variance, minimum, maximum, sum, and count. Addition-
ally, GSSIM enables researchers to repeat experiment
multiple times to be sure that obtained results are statisti-
cally representative. In this case, GSSIM results contains
statistics collected during multiple runs of experiment.
 More details about this and other experiments, which
are useful for validation of GSSIM results and as examples
for other users, are provided within the Grid Scheduling
Simulations portal.

VII. CONCLUSION

 In this paper we present a tool, which is an attempt
towards more common and easier comparison of results of
Grid scheduling experiments. It is complementary to the
existing activities with regard to two major issues. First, it
allows researchers to share all elements of experiments
including implementations of Grid scheduling algorithms
(not only workloads). Second, in order to compensate for
a low number of currently available real Grid workloads, it
provides generation tools and a repository for synthetic and
semi-synthetic workloads. Furthermore, since GSSIM
supports both SWF and GWF formats, it is compatible with
other existing approaches. However, due to requirements for
a high flexibility of the simulator, it also provides extensions
allowing to describe additional elements of a workload.
 Among many possible future works, we are eager to
adopt other standard formats provided especially if their set
is sufficiently flexible and comprehensive (e.g. job and
resource description languages from OGF). Further, we
plan to validate GSSIM by comparing results obtained in
GSSIM experiments with those performed in real environ-
ments using the same algorithms in GRMS. Additional
work will include a comparison of algorithms’ behavior on
synthetic and real workloads. All this will be available
from the GSSIM portal, which will be regularly updated.

Acknowledgment

 The authors would like to thank Marcin Krystek, Ja-
kub Milkiewicz, and Stanislaw Szczepanowski for their
contribution to GSSIM development. Special thanks go to
Rajkumar Buyya and Michael Russell for their remarks and
valuable comments.

References

 [1] R. Buyya and M. Murshed, GridSim: A toolkit for the
modeling and simulation of distributed resource manage-
ment and scheduling for Grid computing. Concurrency and
Computation: Practice and Experience 2002 14(13-15),
1175-1220 (2002).

 [2] Parallel Workload Archive.
http://www.cs.huji.ac.il/labs/parallel/workload/

 [3] Grid Workloads Archive. http://gwa.ewi.tudelft.nl/
 [4] A. Sulistio, C. S. Yeo and R. Buyya, A Taxonomy of Com-

puter-based Simulation and its Mapping to Parallel and
Distributed Systems Simulation Tools, Software – Practive
And Experience, 2004, John Wiley and Sons, 2004.

 [5] K. Aida, A. Takefusa, H. Nakada, S. Matsuoka, S. Se-
kiguchi and U. Nagashima, Performance Evaluation Mo-
del for Scheduling in a Global Computing System, Int.
J. of High Performance Computing Applications 14(3),
268-279 (2000).

 [6] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang,
K. Taura and A. Chien, The MicroGrid: A scientific tool for
modeling computational Grids. IEEE Supercomputing
(SC2000), Dallas, TX, 4-10 November 2000. IEEE Com-
puter Society Press: Los Alamitos, CA, 2000.

 [7] A. Legrand, L. Marchal and H. Casanova, Scheduling dis-
tributed applications: The SimGrid simulation framework.
In Proceedings 3rd IEEE/ACM International Symposium
on Cluster Computing and the Grid (CCGrid2003), Tokyo,
Japan, 12-15 May 2003. IEEE Computer Society Press: Los
Alamitos, CA, 2003.

 [8] W. Kreutzer, J. Hopkins and M. Mierlo, SimJAVA –
A Framework for modeling queueing networks in Java,
Proceedings of the 1997 Winter Simulation Conference ed,
1997.

 [9] A. Sulistio and R. Buyya, A Grid simulation infrastructure
supporting advance reservation. In Proceedings 16th Inter-
national Conference on Parallel and Distributed Computing
and Systems, Cambridge, USA, November 9–11, 2004.

[10] D. G. Feitelson, Packing schemes for gang scheduling. In
Job Scheduling Strategies for Parallel Processing.
D. G. Feitelson and L. Rudolph (eds.), pp. 89-110, Sprin-
ger-Verlag 1996, Lecture Notes Computer Science vol.
1162.

[11] U. Lublin and D. G. Feitelson, The workload on parallel
supercomputers: modeling the characteristics of rigid jobs.
J. Parallel and Distributed Comput. 63(11), 1105-1122,
2003.

[12] M. Lo, J. Mache and K. J. Windisch, A Comparative Study
of Real Workload Traces and Synthetic Workload Models
for Parallel Job Scheduling, Proceedings of the Workshop
on Job Scheduling Strategies for Parallel Processing, Lec-
ture Notes In Computer Science 1459, 25-46 (1998).

[13] K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Oleksiak and
J. Pukacki, Improving Grid Level Throughput Using Job
Migration and Rescheduling Techniques in GRMS, Scien-
tific Programming, IOS Press. Amsterdam The Netherlands
263-273 (2004).

[14] J. Nabrzyski, J. Schopf and J. Weglarz, (eds.), Grid Reso-
urce Management, Kluwer Academic Publishers, Boston/-
Dordrecht/London, 2003.

[15] The Grid Scheduling Simulations Portal,
http://www.gssim.org

GSSIM – Grid Scheduling Simulator 129

KRZYSZTOF KUROWSKI received the Bachelor of Science Degree from Computer Science Institute of the
Poznan University of Technology in 1999. He continued his education at the Laboratory of Intelligent
Decision Support System and did a second faculty at the Management and Logistic Institute. His Master
Degree Diploma has been approved and honoured by the University of Paris-Dauphine in France. He joined
in research and development activities conducted at Poznan Supercomputing and Networking Centre in
1999. He has taken an active interest especially in the following research fields: multi-objective
optimisation, scheduling and resource management in grid environments. He has been involved in many
national grid-related projects, e.g. PROGRESS, SGIGrid and Clusterix. He has taken also an active part in
some EU Projects within 5 and 6 Framework Programme, e.g. Enacts, GridLab, inteliGrid and HPC-Europa.
Results of his research efforts have been successfully presented at many international workshops and
conferences, including IFORS, CCGrid, HPDC, Supercomputing and GGF.

JAREK NABRZYSKI received his M.Sc. and Ph.D. degrees in computer science from Poznań University of
Technology in POLAND. Currently he is a researcher at the Poznań Supercomputing and Networking
Center (PSNC), where he heads the Applications Department. His research interests over the last 10 years
have focused on knowledge-based multiobjective project scheduling, and resource management for parallel
and distributed computing. For the last couple of years he has been working on tools and middleware
technologies for computational grids. Jarek Nabrzyski is a co-founder of the European Grid Forum and the
Global Grid Forum. In 2001-2002 he was a member of the Global Grid Forum Steering Group where he was
the Area Director of the Applications, Programming Models and Environments Area. In 2002-2005 he
managed the European GridLab project, in which he was one of the Principal Investigators, responsible for
such areas as Resource Management, Security and Mobile User Support. He is also involved in a number of
6FP projects, including e.g. ACGT, InteliGrid, GridCoord, BREIN, QosCosGrid, Challengers, BeInGrid,
OMII-Europe. Jarek Nabrzyski is a member of several advisory boards, including projects such as
Akogrimo, CoreGrid and UCoMs (USA). He is also a member of the KISTI Supercomputing Center
Advisory Board (Korea).

ARIEL OLEKSIAK received his diploma in Computer Science at the Poznań University of Technology
(Laboratory of Intelligent Decision Support Systems) in 2001. Since 2002 he has been working at the
Application Department of the Poznań Supercomputing and Networking Center. His research interests
include mainly resource management in Grids, scheduling, multi-criteria decision support, optimization, and
knowledge discovery. He has participated in many Polish as well as international research projects related to
Grids such as GridLab, SGigrid, Clusterix, HPC-Europa, and BREIN. He presented his results in many
international conferences, workshops, and scientific journals.

JAN WEGLARZ, Academician, Professor (Ph.D. 1974, Dr. Habil. 1977), in years 1978-83 Associate Professor
and then Professor in the Institute of Computing Science, Poznań University of Technology, member of the
Polish Academy of Sciences (PAS), Director of the Institute of Computing Science, Poznań University of
Technology and its predecessors since 1987, Director of Poznań Supercomputing and Networking Center,
President and Scientific Secretary of the Poznań Branch of the PAS, vice President of the Committee for
Computer Science of the PAS, member of the State Committee for Scientific Research, Principal Editor of the
Foundations of Computing and Decision Sciences, member of several editorial boards, among others Internat.
Trans. Opnl. Res. and European J. Opnl. Res. Representative of Poland in the Board of Representatives of
IFORS and in EURO Council (President of EURO in years 1997-98). Member of several professional and
scientific societies, among others the American Mathematical Society and the Operations Research Society of
America. Author and co-author of 11 monographs, 3 textbooks (3 editions each) and over 200 papers in major
professional journals and conference proceedings. Frequent visitor in major research centers in Europe and in
the USA. Co-laureate of the State Award (1988) and the EURO Gold Medal (1991), laureate of the Foundation
for Polish Science Award (2000).

 COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 13(2), 121-129 (2007)

