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1.  INTRODUCTION 

An integral component of the support model for 
a world-class supercomputer is the work done by the appli-
cations support team to help the supercomputer users make 
the most efficient use of their computer time allocations. 
This applications support involves all aspects of code 
porting and optimization, code debugging, scaling, etc. 
Several case studies derived from our work in helping users 
optimize their codes on the Columbia supercomputer have 
been presented at both the 2005 [1] and 2006 [2] SGI User 
Group Technical Conference. This paper describes four of 
those case studies. 

First, we present a brief description and history of 
the Columbia supercomputer, which also sets the termino-
logy used throughout the paper. For example, the definition 
of a “node” can be different for different people. The first 
two case studies deal with process-placement – the first one 
does the pinning implicitly via the “dplace” command, and 
the second does it explicitly by calling the “cpuset_pin” 
function from within the user code. The third case study 
deals with OpenMP scaling on the SGI Altix, and the 
fourth on eliminating unaligned memory accesses from 
user codes. 

2.  COLUMBIA  SUPERCOMPUTER 

The Columbia supercomputer is a cluster of twenty SGI 
Altix systems, each with 512 Intel Itanium 2 processors and 
1 terabyte of global shared-memory. Twelve of these sys-
tems are of the SGI Altix 3700 series [3] and the other 
eight are of the newer SGI Altix 3700 BX2 systems. Four 
of the BX2’s are interconnected via NUMAlink 4 into 
a 2048-processor capability system. In the summer of 2004, 
as each additional 512-processor system was delivered, it 
was assembled in one-day, a set of diagnostics was run on 
the second day, and on the third day, the machine was 
available for user applications. By October, 2004, NASA 
had enough systems to obtain a LINPACK number [4] that 
placed Columbia number one in the world. That announ-
cement [4], however, was short-lived as nine days later, 
IBM announced [5] a LINPACK number that exceeded 
even the theoretical peak of Columbia. In the past 3 semi-
annual rankings on the Top500 list [6], Columbia’s 51.87 
TFlops LINPACK number places it 2nd, 3rd, and 4th on the 
Nov. 2004, June 2005, and Nov. 2005 rankings, respect-
ively. 

The basic computational building block of the SGI 
Altix 3700 system is the C-brick, which consists of two 
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nodes connected to each other via a NUMAlink 4 
interconnect. Each node contains two processors, which 
share a front-side bus connection to a single on-node 
memory an ASIC called the Super Hub or SHUB for short. 
The SHUB is also used to connect processors on a node to 
processors outside the C-brick via router- or R-bricks or 
directly through other SHUBs. For the Altix 3700 series, 
the network connecting outside the C-brick is NUMAlink 3. 
The BX2 systems differ from the earlier 3700 series in that 
all the nodes are interconnected via the NUMAlink 4 inter-
connect, which has twice the bandwidth of NUMAlink 3. 
Although each processor on an SGI Altix has access to 
memory on all other nodes, there is a performance penalty 
associated with accessing remote memory especially as the 
number of router hops increases. Removing or reducing 
this remote memory access by increasing local memory 
access is a common theme in three of the case studies on 
performance enhancement. 

3.  CASE  STUDY  1:  
IMPLICIT  PROCESS-PLACEMENT 

In the first case study, one of our researchers wanted to 
create an aeroelastic stability derivative database by running 
multiple copies of the Overflow code in serial mode.  When 
he ran one copy of the executable, it took 12 minutes to run.  
With 128 copies, it took 30 minutes, and with 500 copies, it 
took more than 6 hours to complete. What’s going on here?  
Ideally, one would like all 500 copies running on 500 CPUs 
to finish at the same time – in 12 minutes.  

What was happening here is that the kernel started 
several processes on the same set of CPUs causing massive 
contention. Eventually, when processes were moved to idle 
CPUs, their memory was not moved, so those migrated 
processes would access non-local memory. To avoid these 
problems, we have to start each process on a separate CPU 
and pin them there to avoid their migrating to other CPUs. 
This is accomplished with the dplace command. In the 
script below, we show the modified parts of the script in 
red. First, we set n – the relative CPU number – to zero. 
Then we loop over i, j, and k for the 10 by 10 by 5 or 500 
cases. For each case, we “cd” to a subdirectory, remove the 
previous output file, and run the Overflow program with 
the dplace command, putting it in the background. “n” is 
then incremented for the next point in the database and so 
forth. There is a “wait” at the end to wait for all the back-
grounded processes to complete before proceeding.   

 
# set the relative cpu number (first one at 0) 
set n = 0 

foreach i ( 1 2 3 4 5 ) 
foreach j ( 0 1 2 3 4 5 6 7 8 9 ) 
foreach k ( 0 1 2 3 4 5 6 7 8 9 ) 

cd CASE$i$j$k 
/bin/rm -f  boost$i$j$k.out 
cp rgrid$i.dat grid.in 
cp case$j$k over.namelist 

dplace -c $n ./overflow  > boost$i$j$k.out & 

# increment relative cpu number 
@ n++ 
cd .. 
end 
end 
end 
wait 

 
With process-pinning, the 500 process job took 17 

minutes to complete instead of over 6 hours. That’s a 21x 
speed-up. Well, one might wonder why it took 17 minutes 
instead of 12. There are two reasons for this. First, there is 
some memory contention because the two processes on 
a node share a single front-side bus to the memory. Second, 
with all 500 processes reading and writing to the same 
filesystem, there is also disk contention as well. In any 
case, the user was very happy to get the 21× speed-up.  

 

4.  CASE  STUDY  2:  
EXPLICIT PROCESS-PLACEMENT 

For the second case study, we look at one of the opti-
mization steps for the NASA finite-volume General Circu-
lation Model (fvGCM) code. This is a global weather 
modeling code where researchers have been cranking up 
the resolution over the past few years [7]. At the 1/8th degree 
resolution, that translates to about a 10 km grid spacing 
along the equator. With so many grid points, the memory 
requirements of the code were huge. The code is written in 
a hybrid MPI + OpenMP programming paradigm. 

When we first started running the code, the kernel 
would kill the job because it tried to access more memory 
than what’s available in the cpuset. A cpuset is a set of 
CPUs that’s allocated to the job by the batch queueing 
system. By trial-and-error, we figured out that a 20 MPI by 
4 OpenMP case (an 80 processor job) needed the memory 
of 268 CPUs to run. We used SGI’s message passing 
library, which is already tuned for the Altix machine. There 
is an environment variable MPI_OPENMP_INTEROP that 
one can set to improve the placement of processes and 
threads. In particular, if one has MPI_OPENMP_INTEROP 
set, and OMP_NUM_THREADS is set to 4, then when 
MPI starts up, the MPI processes are placed 4 CPUs apart 
to leave space for the OpenMP threads spawned by each 
process. This is the right thing to do because then, the 
threads would be accessing the local memory that’s closest 
to the process that spawned them. Unfortunately, for this 
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case, there were still lots of non-local memory accesses. If 
you divide the memory of 268 CPUs by 80 processes and 
threads, you see that each thread needs the memory of 
approximately 3 CPUs. So, to improve the memory locality, 
you’ll want to space the threads 3 CPUs apart. This is done by 
explicitly calling the process-pinning function from within the 
fvGCM code. The code modifications are relatively 
straightforward: right after the MPI_Init, MPI_Comm_rank 
and MPI_Comm_size function calls, one puts in an OpenMP 
parallel region, which does nothing but determine which 
thread it is in the series and pins the thread to the ap-
propriate relative CPU. 

Here’s the interface to the process-pinning function 
under the Linux 2.6 kernel: 

 
#include <bitmask.h> 
#include <cpuset.h> 

int cpuset_pin(int relcpu); 
  Pin the current task to execute only on the CPU relcpu, which is 

a relative CPU number within the current cpuset of that task. 
Also automatically pin the memory allowed to be used by the 
current task to the memory on that same node (as determined by 
the advanced cpuset_cpu2node() function) (see the cpuset 
manpages for more details). 
 
One simply passes the relative CPU number into the 

cpuset_pin function. So for this case study, thread 0 of rank 
0 passes in relative CPU 0, while thread 1 of rank 0 passes 
in relative CPU 3, and so forth. The only other thing one 
needs at the load step is to link in the cpuset library (add –
lcpuset to the link line). This simple pinning “trick” was 
sufficient to make memory accesses as close to the exe-
cuting thread as possible and the reduction in non-local 
memory accesses yielded an approximately 2x speed-up. 

For Fortran codes that need to access the cpuset_pin 
function, here is a C-wrapper [8] for the Fortran interface: 

 
#include <bitmask.h>  
#include <cpuset.h>  
#include <stdio.h>  

int 
cpuset_pin_(int *p_relcpu) 
{ 
  int rtn = cpuset_pin(*p_relcpu); 
  if (rtn  < 0) { 
    perror("cpuset_pin"); 
    fprintf(stderr, "cpuset_pin failed for relative cpu %d\n",  
           *p_relcpu); 
  } 
  return rtn; 
} 

 This case study is one of many scenarios where explicit 
process-pinning yields performance gains. Further optimi-

zation steps for the fvGCM code increased the number of 
threads for each process to use the otherwise idle CPUs in 
the cpuset. 

5.  CASE  STUDY  3:  OPENMP  SCALING 

An often-heard “complaint” from our users is that their 
code is not scaling as well on the Altix as it was on the 
Origins. If the code scaled well to hundreds of threads, it 
was probably run on an SGI Origin. We’ve had SGI 
Origins at NASA Ames for over 7 years. Compared to the 
last SGI Origin in our series, which had a 600 MHz clock 
and a peak of 1.2 GFlops/processor, the SGI Altix with 
a 1.5 GHz clock is 5 times faster when comparing peak 
processor speed. However, the Numalink interconnect has 
not improved that much. So while the serial version of 
the code may actually run 5 times faster or more than the 
Origin, the parallel version may only run 3 times faster or 
less as one scales to more and more CPUs compared to the 
Origins. But it’s still running faster on the Altix, right? And 
it’s precisely because it is running faster that it doesn’t 
scale as well. To improve scaling on the Altix, one needs to 
further reduce memory contention and increase locality of 
memory access. The keyword here is “further.” The code 
may already be well-tuned for a large SMP, but we’ll show 
a “trick” here that will give a bigger performance boost on 
the Altix than, say, on an Origin. 

Here’s version 1 of the code: 
 

      program main_v1 
      parameter(nmax=1000, kmax= 512) 
      real (kind=8) :: a,b 
      common /block/ a(nmax,nmax), b(nmax,nmax,kmax) 
      real (kind=8) :: psum(kmax) 
      call random_number(a)         ! fill a with random numbers 
!$OMP PARALLEL DO SHARED(b) 
      do k = 1,kmax 
         b(:,:,k) = 0.0 
      enddo 
!$OMP END PARALLEL DO 
      niter = 40 
      do iter = 1,niter 
!$OMP PARALLEL SHARED(a,b,psum,iter) 
!$OMP DO 
      do k = 1,kmax 
        call fillb(nmax,a,b,k,iter)        ! memory contention on a 
      enddo 
!$OMP END DO 
!$OMP DO 
      do k = 1,kmax 
        call work(nmax,kmax,b,k,psum(k)) 
      enddo 
!$OMP END DO 
!$OMP END PARALLEL 
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      enddo 
! dummy print statement to avoid compiler optimizing away code 
      if (a(1,1) .lt. -0.1) print *, psum 
      end 

      subroutine fillb(nmax,a,b,k,iter) 
      real (kind=8) :: a(nmax,nmax), b(nmax,nmax,*) 
      do j = 1,nmax 
        do i = 1,nmax 
          b(i,j,k) = (a(i,j) + iter) * k 
        enddo 
      enddo 
      return 
      end 

      subroutine work(nmax,kmax,b,k,psum) 
      real (kind=8) :: b(nmax,nmax,kmax), psum 
      psum = 0.0 
      do j = 2,nmax-1 
        do i = 2,nmax-1 
           psum = psum + 
     &       0.5 * (b(i+1,j+1,k) + b(i-1,j+1,k) - 2.*b(i,j+1,k) 
     &             +  b(i+1,j,k)    + b(i-1,j,k)     - 2.*b(i,j,k) 
     &             +  b(i+1,j-1,k) + b(i-1,j-1,k)  - 2.*b(i,j-1,k)) 
        enddo 
      enddo 
      return 
      end 

 
The code has two large arrays “a” and “b”. “a” is 1000 

by 1000, and “b” is even larger at 1000 by 1000 by 512 – 
all real*8’s. The idea here is that “a” is a global array that 
is used throughout the code to fill array “b”. For real codes, 
array “a” could be the global variables in the program. In 
physics, it could be Planck’s constant, the speed of light, 
mass of the electron, and so forth. In chemistry, it may be 
the mass of the hydrogen atom, carbon atom, Avogadro’s 
number, or maybe it could be a look-up table that’s used 
for interpolating points in some CFD application. In this 
example, we just fill “a” with random numbers. Now, “a” 
resides in the memory of the master thread on relative 
node 1. When the other threads need to use “a”, they need 
to come to the memory on the first node to get another 
copy of “a” because it doesn’t fit in cache. “a” is 1000 by 
1000 real*8’s or about 8 Mbytes, whereas the Altix 3700 
L3 cache is only 6 Mbytes in size. Array “b” is properly 
initialized in parallel with each thread initializing an i-j 
plane that it then uses. The “iter” loop is the main loop of 
the program, which is iterated 40 times.  The arrays “a”, 
“b”, and “psum” are all shared arrays.  The “iter” do loop 
control variable is also shared and is passed into the fillb 
routine so that “b” is different for each iter iteration. After 
“b” is filled in parallel, it is then used to do some work, 
also in parallel.  

The code then ends with a print statement to prevent 
the compiler from optimizing code away. In subroutine 
“fillb”, the array “a” and scalars “iter” and “k” are used in 
forming an i-j plane of “b”.  Note again that each thread 
needs to get a fresh copy of array “a” because it does not fit 
in cache – and that this causes memory contention. Sub-
routine “work” takes various elements of “b” for particular 
i-j planes and computes “psum”. 

Figure 1 shows the scaling chart for version 1 of the prog-
ram. The code does speed-up with up to 4 threads, but 
beyond 4 threads, the performance gets progressively worse. 

 

 

Fig. 1. OpenMP scaling for version 1 of the code 
 

To avoid the memory contention, there is really only 
one correct way to do that, and that is to make a private 
copy of array “a” for each thread.  Furthermore, the private 
copy needs to persist from one parallel region to the next, 
so it needs to be put into a common block, which is made 
threadprivate. Here are the modified sections of the code: 

 
      common /block2/ acopy(nmax,nmax) 
!$OMP THREADPRIVATE (/block2/) 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
!$OMP PARALLEL SHARED(a,b) 
            acopy = a    ! make a private copy of a for each thread 
!$OMP DO 
            do k = 1,kmax 
               b(:,:,k) = 0.0 
            enddo 
!$OMP END DO 
!$OMP END PARALLEL 
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
      call fillb(nmax,acopy,b,k,iter)  !pass acopy not a 

So, in the very first parallel region where “b” is initia-
lized, the private copies of array “a” are also made. Of 
course, there is memory contention here, but it happens 
only once. And it is “acopy”, not “a”, that is passed to 
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“fillb” in the main loop. There are actually many wrong 
ways to make private copies of array “a”. Instead of putting 
it in a threadprivate common block, one could create pri-
vate copies in the main parallel loop: 

 
      niter = 40 
      do iter = 1,niter 
!$OMP PARALLEL SHARED(a,b,psum,iter) PRIVATE(acopy) 
      acopy = a       ! expensive operation repeated niter times 
!$OMP DO 
      ... 

 
But this is an expensive operation that is repeated niter 

or 40 times by each thread. Instead of creating another 
array named “acopy”, one might consider making “a” first-
private. Well, that’s almost as bad as this because to make 
private copies of “a”, each thread except for the master 
thread needs to go to that first node to get a copy of “a” and 
store it into its local memory.  

Figure 2 shows a comparison of OpenMP scaling for 
versions 1 and 2 of the code. With version 2, the OpenMP 
scaling is much better. There’s more than a factor of 12x 
improvement at 256 threads. In fact, if instead of iterating 
40 times in that main loop, we made niter equal to 1000 to 
amortize the serial time in calling the random number 
generator, then version 2 of the code would scale beyond 
256 threads and the improvement factor over version 1 
would be greater than 12×. 

 

 

Fig. 2. OpenMP scaling comparison for versions 1  
and 2 of the code 

Lastly, in Fig. 3, we show the speed-up for versions 1 and 
2 of the code on the Altix vs. the Origin. For version 1 of the 
code, the SGI Altix runs about 7 times faster than the Origin 
for the serial runs, but then drops to a disappointing 27% 
speed-up at 256 CPUs. For version 2 of the code, the 
performance gain on the Altix is much better. At 256 CPUs, 
the speed-up on the Altix is an impressive factor of 11×. From 
4 threads to 8 threads, there is a decrease in speed-up factor. 
This is because the creation of the private copies of “a” – that 

is, “acopy” – must now go through NUMAlink 3 which has 
half the bandwidth of NUMAlink 4. Recall that 4 CPUs 
 

Fig. 3. Speed-up on the Altix over the Origin 3000 for versions 1 
and 2 of the code 

 

on a C-brick can communicate with each other via NUMAlink 
4, whereas communication to processors outside the C-brick 
goes through NUMAlink 3.  Overall, the speed-up of the runs 
on the Altix over that of the Origin is more than a factor of 6x 
through the whole range of CPUs investigated. This highlights 
the point that additional tuning to remove memory contention 
provides a bigger performance boost on the Altix than on the 
Origin. 

 

6.  CASE STUDY 4:  
UNALIGNED MEMORY ACCESS 

For the last case study, we’ll look at the issue of unalig-
ned memory access. A few months ago, we discovered that 
two jobs with unaligned access problems could actually 
interfere with each other and make both jobs slow down 
even though they are running on different cpusets on the 
same host. We’ll look at the origin of this interference 
problem and how to detect it from the system’s point of 
view. More importantly, we’ll explain how a user can 
detect and fix unaligned access problems in their code.  
We’ll also show a fix to the kernel developed by SGI, 
which reduces or eliminates the interference problem. But, 
first, we’ll show a code [9] that demonstrates the unaligned 
access problem. 

 
program prog3 
integer, parameter::len_i = 2**20, len_y = len_i/2 
common/data/i1,r2(len_i) 
real(kind=8)y(len_y) 
integer(kind=4) time1, time2, time3 

write(6,'(a,1x,z16)')'loc(r2) = ',loc(r2) 
call random_number(y)      ! initialize arrays 
r2 = 0 
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call system_clock(time1) 
do i = 1,500 
call sub(y,len_y)          ! properly aligned on 8-byte boundaries 
enddo 
call system_clock(time2) 
do i = 1,500 
call sub(r2,len_y)         ! unaligned memory access 
enddo 
call system_clock(time3) 
write(6,"('times = ',g12.6,1x,g12.6)")time2-time1,time3-time2 
end 

subroutine sub(x,len) 
real(kind=8)x(len) 
do i = 1,len 
x(i) = i * x(i)        ! a load and store into same memory location 
enddo 
end 

There are two arrays in this code: r2 and y.  “r2” is of 
length 2**20 or about a million, and “y” is half that 
length.  A common block is used to purposely ensure that 
r2, an array of real*4’s, is aligned on a 4-byte boundary 
because the integer “i1” is aligned on an 8-byte boundary. 
The expression “to be aligned on a 4-byte boundary” 
means that the memory address is divisible by 4 but not 
by 8. “y” is properly aligned on an 8-byte boundary, so 
when it is passed into subroutine sub, all the loads and 
stores are aligned.  However, when r2 is passed into sub, 
all the loads and stores are unaligned, that is they are 
aligned on 4-byte boundaries but not 8-byte boundaries. 
Each unaligned access causes a kernel interrupt to form 
an 8-byte number out of 2 neighboring 4-byte quantities. 
This code prints out the memory location of the beginning 
address of r2 to verify that it’s indeed aligned on a 4-byte 
boundary and the times (time2 – time1) for aligned access 
versus times (time3 – time 2) for unaligned access.   

There are a couple of other things to point out about 
this code. First, note that it is “len_y” that is passed into 
subroutine sub for both arrays y and r2. This is to enable 
a direct timing comparison of the same number of loads 
and stores for both aligned and unaligned access. 
Secondly, r2 is a real*4 array and subroutine sub is 
expecting a real*8 array. For the vast majority of codes, 
this would be a programming bug. However, this is legal 
Fortran, and one can consider the declaration of r2 in the 
common block as simply a storage unit. Interestingly 
enough, this precise scenario was used in SGI’s MPT 
library for the MPI_Recv function [8]. In the C version of 
the MPI_Recv function, there is a “status” pointer to a 
structure of type MPI_Status.  Because the original MPI 
standard was written to the Fortran77 specification [10] 
(not Fortran90), there was no standard conforming way to 
define a similar structure in Fortran. As a result, the 
MPI_status type is defined in Fortran to be an array of 
integers of a certain length. In the SGI implementation, 

one of the fields of the MPI_Status type is an 8-byte 
integer (to accommodate the needs of larger memory 
machines), and was formed from two consecutive 4-byte 
integers. The Fortran array of integers, however, only 
guarantees 4-byte alignment and not 8-byte alignment. 
This turned out to be the cause for the vast majority of the 
unaligned access problems experienced by MPI codes 
running on our Altix. After this fact was discovered, SGI 
has provided a fix to the MPT library, which is currently 
being used as the default MPT module on the Columbia 
supercomputer. The fix was done by changing the Fortran 
interface routines to memcpy the incoming array of ints 
into a properly aligned MPI_Status variable on entry, and 
then copy it back out again upon return [8]. But, this is 
getting ahead of the story. 

When the program “prog3” is run on SGI’s ProPack 
4.2, which uses a Linux 2.6 kernel, one sees an output 
similar to the following: 

 
loc(r2) =  6000000000418CD4 
times =         3976      3289999 
 
The loc of r2 is written out in hexadecimal notation.  

From the last digit, one can see that r2 is aligned on a 4-byte 
boundary. Also, the times for unaligned access are about 
800 times longer than for aligned access. Furthermore, if 
this code is run interactively, the following messages 
would be scrolling on the screen: 

 
prog3(13657): unaligned access to 0x6000000000418cd4, 
ip=0x4000000000002ff0 
prog3(13657): unaligned access to 0x6000000000418cdc, 
ip=0x4000000000002ff0 
prog3(13657): unaligned access to 0x6000000000418ce4, 
ip=0x4000000000002ff0 
prog3(13657): unaligned access to 0x6000000000418cec, 
ip=0x4000000000002ff0 

(and 5 seconds later…) 

prog3(13657): unaligned access to 0x6000000000726974, 
ip=0x4000000000002ff0 
prog3(13657): unaligned access to 0x600000000072692c, 
ip=0x4000000000003000 
prog3(13657): unaligned access to 0x600000000072697c, 
ip=0x4000000000002ff0 
prog3(13657): unaligned access to 0x6000000000726934, 
ip=0x4000000000003000 

(and so on …) 
 
The message contains the executable name, the pid, the 

location of the unaligned access, and the instruction 
pointer. One can see that the first address is the beginning 
location of r2 and the subsequent addresses are spread 
8-bytes apart. The writing of these unaligned access mes-
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sages is throttled to a maximum of 4 messages every 5 
seconds. If the code is not run interactively, then there is no 
tty connected to the job, and these messages would be 
logged in the /var/log/messages file.  

We look at the /var/log/messages file quite often in 
trouble-shooting user problems. We had seen lots of these 
unaligned access messages before and thought that they 
were mostly a nuisance in making it more difficult to find 
the more important messages logged by the kernel, until 
a user started complaining that her job took twice as long to 
run after the operating system was changed from the Linux 
2.4 kernel to the Linux 2.6 kernel. The 2.4 kernel uses the 
RedHat Enterprise Linux Advanced Server 3 operating 
system, which does not log unaligned messages and the 2.6 
kernel uses SuSE Linux Enterprise Server 9 (SLES9), 
which does log messages. At the time that user was running 
her job, which was running at half the expected speed, 
there was only one other job from another user running on 
the system. Both jobs were logging an inordinate amount of 
unaligned access messages in the /var/log/messages file. 
We didn’t think that two jobs with unaligned access 
problems could interfere with each other until we ran the 
following experiment.  

1, 2, 4, 8, and 16 concurrent copies of the “prog3” 
program were run on a Columbia 512-processor host that 
had the ProPack 4.2/Linux 2.6 kernel. Figure 4 shows the 
elapsed time for running “prog3” when multiple copies of 
“prog3” are run at the same time. With just one copy, it 
takes about 5 minutes, with 2 copies, about 10 minutes, 
with 4, about 20 minutes, and so on. There’s clearly inter-
ference when running multiple copies. This doesn’t have to 
be multiple jobs running concurrently, it could even be 
a single MPI job where the various processes are inter-
fering with each other. All of this increase in elapsed time 
is due to increases in system time. 

 

 

Fig. 4. Unaligned memory accesses cause interprocess 
interference with Linux 2.6 

 

Figure 5 shows the results of the same experiment 
obtained from a Columbia 512p host running ProPack 3.6 

and the Linux 2.4 kernel. There is absolutely no inter-
process interference with the older operating system, and 
all the runs completed in under 3 minutes, which is less 
time than a single run on ProPack 4.2. These experiments 
were key to convincing SGI engineers that there was an un-
aligned access interference problem. 

 

Fig. 5. Unaligned memory accesses do not cause interprocess 
interference with Linux 2.4 

 
Right after that user complained about her code running 

slowly, one of our local SGI engineers [11] profiled the 
system. Here’s a two line script that he ran as root to 
profile system activity on CPUs 10 to 30: 

cp /boot/System.map-`uname -r` ./System.map 
cpuset -i /PBSPro -I profile.pl -- --no_dplace  -c10-30 /bin/sleep 300 

A copy of the System.map file is necessary in the local 
directory to profile the kernel. The cpuset command in the 
script creates a cpuset consisting of CPUs 10-30. This cpuset 
is overlaid on top of CPUs already pre-assigned to the other 
user job by the PBS batch scheduler (and the creation of an 
overlaying cpuset on top of another user’s cpuset is the 
primary reason why this script must be run as root). 

Profile.pl is a Perl script that eventually uses pfmon to 
get profiling information. Here’s the output from running 
the profiling script: 

Profiling output: 
user ticks:             331447          57.21% 
kernel ticks:          247947          42.79% 
idle ticks:               3                   0% 
Using ./System.map as the kernel map file. 
========================================== 
                           Kernel 
      Ticks     Percent  Cumulative   Routine 
                                  Percent 
-------------------------------------------------------------------- 
     244901       98.77    98.77      within_logging_rate_limit 
           634         0.26    99.03      printk 
           621         0.25    99.28      rcu_process_callbacks 
                                                    … 
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One sees that 43% of the time is spent in the kernel, and 
of these 43%, approximately 99% of the time is spent in-
side a routine called within_logging_rate_limit. This 
function determines whether to log a message or not. The 
actual logging of the message takes about a quarter of 
a percent and processing the unaligned access fault takes 
another quarter of a percent of the kernel time. Everything 
else is miniscure. 

To see why so much time is spent in the within_log-
ging_rate_limit function, we look at the segment of code 
taken from 
/usr/src/linux/arch/ia64/kernel/unaligned.c: 

 
/*  
 * Make sure we log the unaligned access, so that user/sysadmin 
 * can notice it and eventually fix the program.   
 * However, we don't want to do that for every access so we pace  
 * it with jiffies.  This isn't really MP-safe, but it doesn't really have to  
 * be either... 
 */ 
static int 
within_logging_rate_limit (void) 
{ 
        static unsigned long count, last_time;  ← count & last_time  

          on hot cache line 

        if (jiffies - last_time > 5*HZ) 
                count = 0; 
        if (++count < 5) {                                 ← count updated every   
                                                                        single time! 
                last_time = jiffies; 
                return 1; 
        } 
        return 0; 
} 
 

The problem is that both count and last_time are static 
variables. “jiffies” is a kernel timing variable measured in 
units of Hz. When the number of jiffies has incremented 
past last_time by more than 5 Hz, count is reset to 0. Here, 
count is incremented for every unaligned access, and as 
long as count is less than 5, it updates “last_time” and 
returns 1 to print the message. Now, since both “count” and 
“last_time” are both static, whenever a process needs to 
update “count” or “last_time,” it needs to invalidate all 
other processes’ copies of that cache line. In the words of 
kernel hackers, this hot cache line is zipping around the 
system between processes that have unaligned accesses. 
And because “count” is updated every single time, the in-
validation and contention on the hot cache line has to occur 
whether an unaligned access message is logged or not. 

After we pointed out the problem that unaligned memory 
accesses can cause interference between concurrently run-
ning jobs to SGI engineers, they came up with the following 
fix, which has now been incorporated into SLES10: 

static int 
within_logging_rate_limit (void) 
 { 
         static unsigned long count, last_time; 
 
         if (jiffies - last_time > 5*HZ) 
                 count = 0; 
         if (count < 5) { 
                 last_time = jiffies; 
                 count++;            ← count updated ONLY if less than 5    
                 return 1; 
         } 
         return 0; 
} 
 

In this new function, count and last_time are updated 
only if countis less than 5.This fix is enough to eliminate or 
significantly reduce interference between jobs. 

But more important than the kernel fix is to fix the 
user’s code. So how can a user find the source of their 
unaligned access? There are two methods: The first is that 
the user can issue the command: 
 
prctl --unaligned=signal  
 
before running the application. This would cause a core 
dump at the first instance of an unaligned access. If the 
code is also compiled with –traceback and –g, then the 
stack trace will contain both the routine name and line 
number of the code that is causing the unaligned access.  
Another method is to compile and link the code with the 
following flag: 
 
-Wl,--print-map 
 

This will pass the --print-map option to the loader to 
print the loadmap. Then, one can track down the addresses 
given by those unaligned access messages via the loadmap 
down to the corresponding variables within the code. 
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