
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2006, 13-21

1. INTRODUCTION

An integral component of the support model for
a world-class supercomputer is the work done by the appli-
cations support team to help the supercomputer users make
the most efficient use of their computer time allocations.
This applications support involves all aspects of code
porting and optimization, code debugging, scaling, etc.
Several case studies derived from our work in helping users
optimize their codes on the Columbia supercomputer have
been presented at both the 2005 [1] and 2006 [2] SGI User
Group Technical Conference. This paper describes four of
those case studies.

First, we present a brief description and history of
the Columbia supercomputer, which also sets the termino-
logy used throughout the paper. For example, the definition
of a “node” can be different for different people. The first
two case studies deal with process-placement – the first one
does the pinning implicitly via the “dplace” command, and
the second does it explicitly by calling the “cpuset_pin”
function from within the user code. The third case study
deals with OpenMP scaling on the SGI Altix, and the
fourth on eliminating unaligned memory accesses from
user codes.

2. COLUMBIA SUPERCOMPUTER

The Columbia supercomputer is a cluster of twenty SGI
Altix systems, each with 512 Intel Itanium 2 processors and
1 terabyte of global shared-memory. Twelve of these sys-
tems are of the SGI Altix 3700 series [3] and the other
eight are of the newer SGI Altix 3700 BX2 systems. Four
of the BX2’s are interconnected via NUMAlink 4 into
a 2048-processor capability system. In the summer of 2004,
as each additional 512-processor system was delivered, it
was assembled in one-day, a set of diagnostics was run on
the second day, and on the third day, the machine was
available for user applications. By October, 2004, NASA
had enough systems to obtain a LINPACK number [4] that
placed Columbia number one in the world. That announ-
cement [4], however, was short-lived as nine days later,
IBM announced [5] a LINPACK number that exceeded
even the theoretical peak of Columbia. In the past 3 semi-
annual rankings on the Top500 list [6], Columbia’s 51.87
TFlops LINPACK number places it 2nd, 3rd, and 4th on the
Nov. 2004, June 2005, and Nov. 2005 rankings, respect-
ively.

The basic computational building block of the SGI
Altix 3700 system is the C-brick, which consists of two

Columbia Application Performance
Tuning Case Studies

Johnny Chang

NASA Advanced Supercomputing Division
Computer Sciences Corporation

NASA Ames Research Center
Moffett Field, California 94035-1000, USA

jchang@mail.arc.nasa.gov

(Rec. 12 June 2006)

Abstract: This paper describes four case studies of application performance enhancements on the Columbia supercomputer. The
Columbia supercomputer is a cluster of twenty SGI Altix systems, each with 512 Itanium 2 processors and 1 terabyte of global shared-
memory, and is located at the NASA Advanced Supercomputing (NAS) facility in Moffett Field. The code optimization techniques
described in the case studies include both implicit and explicit process-placement to pin processes on CPUs closest to the processes’
memory, removing memory contention in OpenMP applications, eliminating unaligned memory accesses, and system profiling. These
techniques enabled approximately 2- to 20-fold improvements in application performance.
Key words: Code tuning, process-placement, OpenMP scaling, memory contention, unaligned memory access

user
Tekst maszynowy
CMST SI(1) 13-21 (2006)

user
Tekst maszynowy
DOI:10.12921/cmst.2006.SI.01.13-21

user
Tekst maszynowy

user
Tekst maszynowy

J. Chang 14

nodes connected to each other via a NUMAlink 4
interconnect. Each node contains two processors, which
share a front-side bus connection to a single on-node
memory an ASIC called the Super Hub or SHUB for short.
The SHUB is also used to connect processors on a node to
processors outside the C-brick via router- or R-bricks or
directly through other SHUBs. For the Altix 3700 series,
the network connecting outside the C-brick is NUMAlink 3.
The BX2 systems differ from the earlier 3700 series in that
all the nodes are interconnected via the NUMAlink 4 inter-
connect, which has twice the bandwidth of NUMAlink 3.
Although each processor on an SGI Altix has access to
memory on all other nodes, there is a performance penalty
associated with accessing remote memory especially as the
number of router hops increases. Removing or reducing
this remote memory access by increasing local memory
access is a common theme in three of the case studies on
performance enhancement.

3. CASE STUDY 1:
IMPLICIT PROCESS-PLACEMENT

In the first case study, one of our researchers wanted to
create an aeroelastic stability derivative database by running
multiple copies of the Overflow code in serial mode. When
he ran one copy of the executable, it took 12 minutes to run.
With 128 copies, it took 30 minutes, and with 500 copies, it
took more than 6 hours to complete. What’s going on here?
Ideally, one would like all 500 copies running on 500 CPUs
to finish at the same time – in 12 minutes.

What was happening here is that the kernel started
several processes on the same set of CPUs causing massive
contention. Eventually, when processes were moved to idle
CPUs, their memory was not moved, so those migrated
processes would access non-local memory. To avoid these
problems, we have to start each process on a separate CPU
and pin them there to avoid their migrating to other CPUs.
This is accomplished with the dplace command. In the
script below, we show the modified parts of the script in
red. First, we set n – the relative CPU number – to zero.
Then we loop over i, j, and k for the 10 by 10 by 5 or 500
cases. For each case, we “cd” to a subdirectory, remove the
previous output file, and run the Overflow program with
the dplace command, putting it in the background. “n” is
then incremented for the next point in the database and so
forth. There is a “wait” at the end to wait for all the back-
grounded processes to complete before proceeding.

set the relative cpu number (first one at 0)
set n = 0

foreach i (1 2 3 4 5)
foreach j (0 1 2 3 4 5 6 7 8 9)
foreach k (0 1 2 3 4 5 6 7 8 9)

cd CASEij$k
/bin/rm -f boostij$k.out
cp rgrid$i.dat grid.in
cp casejk over.namelist

dplace -c $n ./overflow > boost$ijk.out &

increment relative cpu number
@ n++
cd ..
end
end
end
wait

With process-pinning, the 500 process job took 17

minutes to complete instead of over 6 hours. That’s a 21x
speed-up. Well, one might wonder why it took 17 minutes
instead of 12. There are two reasons for this. First, there is
some memory contention because the two processes on
a node share a single front-side bus to the memory. Second,
with all 500 processes reading and writing to the same
filesystem, there is also disk contention as well. In any
case, the user was very happy to get the 21× speed-up.

4. CASE STUDY 2:
EXPLICIT PROCESS-PLACEMENT

For the second case study, we look at one of the opti-
mization steps for the NASA finite-volume General Circu-
lation Model (fvGCM) code. This is a global weather
modeling code where researchers have been cranking up
the resolution over the past few years [7]. At the 1/8th degree
resolution, that translates to about a 10 km grid spacing
along the equator. With so many grid points, the memory
requirements of the code were huge. The code is written in
a hybrid MPI + OpenMP programming paradigm.

When we first started running the code, the kernel
would kill the job because it tried to access more memory
than what’s available in the cpuset. A cpuset is a set of
CPUs that’s allocated to the job by the batch queueing
system. By trial-and-error, we figured out that a 20 MPI by
4 OpenMP case (an 80 processor job) needed the memory
of 268 CPUs to run. We used SGI’s message passing
library, which is already tuned for the Altix machine. There
is an environment variable MPI_OPENMP_INTEROP that
one can set to improve the placement of processes and
threads. In particular, if one has MPI_OPENMP_INTEROP
set, and OMP_NUM_THREADS is set to 4, then when
MPI starts up, the MPI processes are placed 4 CPUs apart
to leave space for the OpenMP threads spawned by each
process. This is the right thing to do because then, the
threads would be accessing the local memory that’s closest
to the process that spawned them. Unfortunately, for this

Columbia Application Performance Tuning Case Studies 15

case, there were still lots of non-local memory accesses. If
you divide the memory of 268 CPUs by 80 processes and
threads, you see that each thread needs the memory of
approximately 3 CPUs. So, to improve the memory locality,
you’ll want to space the threads 3 CPUs apart. This is done by
explicitly calling the process-pinning function from within the
fvGCM code. The code modifications are relatively
straightforward: right after the MPI_Init, MPI_Comm_rank
and MPI_Comm_size function calls, one puts in an OpenMP
parallel region, which does nothing but determine which
thread it is in the series and pins the thread to the ap-
propriate relative CPU.

Here’s the interface to the process-pinning function
under the Linux 2.6 kernel:

#include <bitmask.h>
#include <cpuset.h>

int cpuset_pin(int relcpu);
 Pin the current task to execute only on the CPU relcpu, which is

a relative CPU number within the current cpuset of that task.
Also automatically pin the memory allowed to be used by the
current task to the memory on that same node (as determined by
the advanced cpuset_cpu2node() function) (see the cpuset
manpages for more details).

One simply passes the relative CPU number into the

cpuset_pin function. So for this case study, thread 0 of rank
0 passes in relative CPU 0, while thread 1 of rank 0 passes
in relative CPU 3, and so forth. The only other thing one
needs at the load step is to link in the cpuset library (add –
lcpuset to the link line). This simple pinning “trick” was
sufficient to make memory accesses as close to the exe-
cuting thread as possible and the reduction in non-local
memory accesses yielded an approximately 2x speed-up.

For Fortran codes that need to access the cpuset_pin
function, here is a C-wrapper [8] for the Fortran interface:

#include <bitmask.h>
#include <cpuset.h>
#include <stdio.h>

int
cpuset_pin_(int *p_relcpu)
{
 int rtn = cpuset_pin(*p_relcpu);
 if (rtn < 0) {
 perror("cpuset_pin");
 fprintf(stderr, "cpuset_pin failed for relative cpu %d\n",
 *p_relcpu);
 }
 return rtn;
}

 This case study is one of many scenarios where explicit
process-pinning yields performance gains. Further optimi-

zation steps for the fvGCM code increased the number of
threads for each process to use the otherwise idle CPUs in
the cpuset.

5. CASE STUDY 3: OPENMP SCALING

An often-heard “complaint” from our users is that their
code is not scaling as well on the Altix as it was on the
Origins. If the code scaled well to hundreds of threads, it
was probably run on an SGI Origin. We’ve had SGI
Origins at NASA Ames for over 7 years. Compared to the
last SGI Origin in our series, which had a 600 MHz clock
and a peak of 1.2 GFlops/processor, the SGI Altix with
a 1.5 GHz clock is 5 times faster when comparing peak
processor speed. However, the Numalink interconnect has
not improved that much. So while the serial version of
the code may actually run 5 times faster or more than the
Origin, the parallel version may only run 3 times faster or
less as one scales to more and more CPUs compared to the
Origins. But it’s still running faster on the Altix, right? And
it’s precisely because it is running faster that it doesn’t
scale as well. To improve scaling on the Altix, one needs to
further reduce memory contention and increase locality of
memory access. The keyword here is “further.” The code
may already be well-tuned for a large SMP, but we’ll show
a “trick” here that will give a bigger performance boost on
the Altix than, say, on an Origin.

Here’s version 1 of the code:

 program main_v1
 parameter(nmax=1000, kmax= 512)
 real (kind=8) :: a,b
 common /block/ a(nmax,nmax), b(nmax,nmax,kmax)
 real (kind=8) :: psum(kmax)
 call random_number(a) ! fill a with random numbers
!$OMP PARALLEL DO SHARED(b)
 do k = 1,kmax
 b(:,:,k) = 0.0
 enddo
!$OMP END PARALLEL DO
 niter = 40
 do iter = 1,niter
!$OMP PARALLEL SHARED(a,b,psum,iter)
!$OMP DO
 do k = 1,kmax
 call fillb(nmax,a,b,k,iter) ! memory contention on a
 enddo
!$OMP END DO
!$OMP DO
 do k = 1,kmax
 call work(nmax,kmax,b,k,psum(k))
 enddo
!$OMP END DO
!$OMP END PARALLEL

J. Chang 16

 enddo
! dummy print statement to avoid compiler optimizing away code
 if (a(1,1) .lt. -0.1) print *, psum
 end

 subroutine fillb(nmax,a,b,k,iter)
 real (kind=8) :: a(nmax,nmax), b(nmax,nmax,*)
 do j = 1,nmax
 do i = 1,nmax
 b(i,j,k) = (a(i,j) + iter) * k
 enddo
 enddo
 return
 end

 subroutine work(nmax,kmax,b,k,psum)
 real (kind=8) :: b(nmax,nmax,kmax), psum
 psum = 0.0
 do j = 2,nmax-1
 do i = 2,nmax-1
 psum = psum +
 & 0.5 * (b(i+1,j+1,k) + b(i-1,j+1,k) - 2.*b(i,j+1,k)
 & + b(i+1,j,k) + b(i-1,j,k) - 2.*b(i,j,k)
 & + b(i+1,j-1,k) + b(i-1,j-1,k) - 2.*b(i,j-1,k))
 enddo
 enddo
 return
 end

The code has two large arrays “a” and “b”. “a” is 1000

by 1000, and “b” is even larger at 1000 by 1000 by 512 –
all real*8’s. The idea here is that “a” is a global array that
is used throughout the code to fill array “b”. For real codes,
array “a” could be the global variables in the program. In
physics, it could be Planck’s constant, the speed of light,
mass of the electron, and so forth. In chemistry, it may be
the mass of the hydrogen atom, carbon atom, Avogadro’s
number, or maybe it could be a look-up table that’s used
for interpolating points in some CFD application. In this
example, we just fill “a” with random numbers. Now, “a”
resides in the memory of the master thread on relative
node 1. When the other threads need to use “a”, they need
to come to the memory on the first node to get another
copy of “a” because it doesn’t fit in cache. “a” is 1000 by
1000 real*8’s or about 8 Mbytes, whereas the Altix 3700
L3 cache is only 6 Mbytes in size. Array “b” is properly
initialized in parallel with each thread initializing an i-j
plane that it then uses. The “iter” loop is the main loop of
the program, which is iterated 40 times. The arrays “a”,
“b”, and “psum” are all shared arrays. The “iter” do loop
control variable is also shared and is passed into the fillb
routine so that “b” is different for each iter iteration. After
“b” is filled in parallel, it is then used to do some work,
also in parallel.

The code then ends with a print statement to prevent
the compiler from optimizing code away. In subroutine
“fillb”, the array “a” and scalars “iter” and “k” are used in
forming an i-j plane of “b”. Note again that each thread
needs to get a fresh copy of array “a” because it does not fit
in cache – and that this causes memory contention. Sub-
routine “work” takes various elements of “b” for particular
i-j planes and computes “psum”.

Figure 1 shows the scaling chart for version 1 of the prog-
ram. The code does speed-up with up to 4 threads, but
beyond 4 threads, the performance gets progressively worse.

Fig. 1. OpenMP scaling for version 1 of the code

To avoid the memory contention, there is really only
one correct way to do that, and that is to make a private
copy of array “a” for each thread. Furthermore, the private
copy needs to persist from one parallel region to the next,
so it needs to be put into a common block, which is made
threadprivate. Here are the modified sections of the code:

 common /block2/ acopy(nmax,nmax)
!$OMP THREADPRIVATE (/block2/)
-
!$OMP PARALLEL SHARED(a,b)
 acopy = a ! make a private copy of a for each thread
!$OMP DO
 do k = 1,kmax
 b(:,:,k) = 0.0
 enddo
!$OMP END DO
!$OMP END PARALLEL
-
 call fillb(nmax,acopy,b,k,iter) !pass acopy not a

So, in the very first parallel region where “b” is initia-
lized, the private copies of array “a” are also made. Of
course, there is memory contention here, but it happens
only once. And it is “acopy”, not “a”, that is passed to

Columbia Application Performance Tuning Case Studies 17

“fillb” in the main loop. There are actually many wrong
ways to make private copies of array “a”. Instead of putting
it in a threadprivate common block, one could create pri-
vate copies in the main parallel loop:

 niter = 40
 do iter = 1,niter
!$OMP PARALLEL SHARED(a,b,psum,iter) PRIVATE(acopy)
 acopy = a ! expensive operation repeated niter times
!$OMP DO
 ...

But this is an expensive operation that is repeated niter

or 40 times by each thread. Instead of creating another
array named “acopy”, one might consider making “a” first-
private. Well, that’s almost as bad as this because to make
private copies of “a”, each thread except for the master
thread needs to go to that first node to get a copy of “a” and
store it into its local memory.

Figure 2 shows a comparison of OpenMP scaling for
versions 1 and 2 of the code. With version 2, the OpenMP
scaling is much better. There’s more than a factor of 12x
improvement at 256 threads. In fact, if instead of iterating
40 times in that main loop, we made niter equal to 1000 to
amortize the serial time in calling the random number
generator, then version 2 of the code would scale beyond
256 threads and the improvement factor over version 1
would be greater than 12×.

Fig. 2. OpenMP scaling comparison for versions 1
and 2 of the code

Lastly, in Fig. 3, we show the speed-up for versions 1 and
2 of the code on the Altix vs. the Origin. For version 1 of the
code, the SGI Altix runs about 7 times faster than the Origin
for the serial runs, but then drops to a disappointing 27%
speed-up at 256 CPUs. For version 2 of the code, the
performance gain on the Altix is much better. At 256 CPUs,
the speed-up on the Altix is an impressive factor of 11×. From
4 threads to 8 threads, there is a decrease in speed-up factor.
This is because the creation of the private copies of “a” – that

is, “acopy” – must now go through NUMAlink 3 which has
half the bandwidth of NUMAlink 4. Recall that 4 CPUs

Fig. 3. Speed-up on the Altix over the Origin 3000 for versions 1
and 2 of the code

on a C-brick can communicate with each other via NUMAlink
4, whereas communication to processors outside the C-brick
goes through NUMAlink 3. Overall, the speed-up of the runs
on the Altix over that of the Origin is more than a factor of 6x
through the whole range of CPUs investigated. This highlights
the point that additional tuning to remove memory contention
provides a bigger performance boost on the Altix than on the
Origin.

6. CASE STUDY 4:
UNALIGNED MEMORY ACCESS

For the last case study, we’ll look at the issue of unalig-
ned memory access. A few months ago, we discovered that
two jobs with unaligned access problems could actually
interfere with each other and make both jobs slow down
even though they are running on different cpusets on the
same host. We’ll look at the origin of this interference
problem and how to detect it from the system’s point of
view. More importantly, we’ll explain how a user can
detect and fix unaligned access problems in their code.
We’ll also show a fix to the kernel developed by SGI,
which reduces or eliminates the interference problem. But,
first, we’ll show a code [9] that demonstrates the unaligned
access problem.

program prog3
integer, parameter::len_i = 2**20, len_y = len_i/2
common/data/i1,r2(len_i)
real(kind=8)y(len_y)
integer(kind=4) time1, time2, time3

write(6,'(a,1x,z16)')'loc(r2) = ',loc(r2)
call random_number(y) ! initialize arrays
r2 = 0

J. Chang 18

call system_clock(time1)
do i = 1,500
call sub(y,len_y) ! properly aligned on 8-byte boundaries
enddo
call system_clock(time2)
do i = 1,500
call sub(r2,len_y) ! unaligned memory access
enddo
call system_clock(time3)
write(6,"('times = ',g12.6,1x,g12.6)")time2-time1,time3-time2
end

subroutine sub(x,len)
real(kind=8)x(len)
do i = 1,len
x(i) = i * x(i) ! a load and store into same memory location
enddo
end

There are two arrays in this code: r2 and y. “r2” is of
length 2**20 or about a million, and “y” is half that
length. A common block is used to purposely ensure that
r2, an array of real*4’s, is aligned on a 4-byte boundary
because the integer “i1” is aligned on an 8-byte boundary.
The expression “to be aligned on a 4-byte boundary”
means that the memory address is divisible by 4 but not
by 8. “y” is properly aligned on an 8-byte boundary, so
when it is passed into subroutine sub, all the loads and
stores are aligned. However, when r2 is passed into sub,
all the loads and stores are unaligned, that is they are
aligned on 4-byte boundaries but not 8-byte boundaries.
Each unaligned access causes a kernel interrupt to form
an 8-byte number out of 2 neighboring 4-byte quantities.
This code prints out the memory location of the beginning
address of r2 to verify that it’s indeed aligned on a 4-byte
boundary and the times (time2 – time1) for aligned access
versus times (time3 – time 2) for unaligned access.

There are a couple of other things to point out about
this code. First, note that it is “len_y” that is passed into
subroutine sub for both arrays y and r2. This is to enable
a direct timing comparison of the same number of loads
and stores for both aligned and unaligned access.
Secondly, r2 is a real*4 array and subroutine sub is
expecting a real*8 array. For the vast majority of codes,
this would be a programming bug. However, this is legal
Fortran, and one can consider the declaration of r2 in the
common block as simply a storage unit. Interestingly
enough, this precise scenario was used in SGI’s MPT
library for the MPI_Recv function [8]. In the C version of
the MPI_Recv function, there is a “status” pointer to a
structure of type MPI_Status. Because the original MPI
standard was written to the Fortran77 specification [10]
(not Fortran90), there was no standard conforming way to
define a similar structure in Fortran. As a result, the
MPI_status type is defined in Fortran to be an array of
integers of a certain length. In the SGI implementation,

one of the fields of the MPI_Status type is an 8-byte
integer (to accommodate the needs of larger memory
machines), and was formed from two consecutive 4-byte
integers. The Fortran array of integers, however, only
guarantees 4-byte alignment and not 8-byte alignment.
This turned out to be the cause for the vast majority of the
unaligned access problems experienced by MPI codes
running on our Altix. After this fact was discovered, SGI
has provided a fix to the MPT library, which is currently
being used as the default MPT module on the Columbia
supercomputer. The fix was done by changing the Fortran
interface routines to memcpy the incoming array of ints
into a properly aligned MPI_Status variable on entry, and
then copy it back out again upon return [8]. But, this is
getting ahead of the story.

When the program “prog3” is run on SGI’s ProPack
4.2, which uses a Linux 2.6 kernel, one sees an output
similar to the following:

loc(r2) = 6000000000418CD4
times = 3976 3289999

The loc of r2 is written out in hexadecimal notation.

From the last digit, one can see that r2 is aligned on a 4-byte
boundary. Also, the times for unaligned access are about
800 times longer than for aligned access. Furthermore, if
this code is run interactively, the following messages
would be scrolling on the screen:

prog3(13657): unaligned access to 0x6000000000418cd4,
ip=0x4000000000002ff0
prog3(13657): unaligned access to 0x6000000000418cdc,
ip=0x4000000000002ff0
prog3(13657): unaligned access to 0x6000000000418ce4,
ip=0x4000000000002ff0
prog3(13657): unaligned access to 0x6000000000418cec,
ip=0x4000000000002ff0

(and 5 seconds later…)

prog3(13657): unaligned access to 0x6000000000726974,
ip=0x4000000000002ff0
prog3(13657): unaligned access to 0x600000000072692c,
ip=0x4000000000003000
prog3(13657): unaligned access to 0x600000000072697c,
ip=0x4000000000002ff0
prog3(13657): unaligned access to 0x6000000000726934,
ip=0x4000000000003000

(and so on …)

The message contains the executable name, the pid, the

location of the unaligned access, and the instruction
pointer. One can see that the first address is the beginning
location of r2 and the subsequent addresses are spread
8-bytes apart. The writing of these unaligned access mes-

Columbia Application Performance Tuning Case Studies 19

sages is throttled to a maximum of 4 messages every 5
seconds. If the code is not run interactively, then there is no
tty connected to the job, and these messages would be
logged in the /var/log/messages file.

We look at the /var/log/messages file quite often in
trouble-shooting user problems. We had seen lots of these
unaligned access messages before and thought that they
were mostly a nuisance in making it more difficult to find
the more important messages logged by the kernel, until
a user started complaining that her job took twice as long to
run after the operating system was changed from the Linux
2.4 kernel to the Linux 2.6 kernel. The 2.4 kernel uses the
RedHat Enterprise Linux Advanced Server 3 operating
system, which does not log unaligned messages and the 2.6
kernel uses SuSE Linux Enterprise Server 9 (SLES9),
which does log messages. At the time that user was running
her job, which was running at half the expected speed,
there was only one other job from another user running on
the system. Both jobs were logging an inordinate amount of
unaligned access messages in the /var/log/messages file.
We didn’t think that two jobs with unaligned access
problems could interfere with each other until we ran the
following experiment.

1, 2, 4, 8, and 16 concurrent copies of the “prog3”
program were run on a Columbia 512-processor host that
had the ProPack 4.2/Linux 2.6 kernel. Figure 4 shows the
elapsed time for running “prog3” when multiple copies of
“prog3” are run at the same time. With just one copy, it
takes about 5 minutes, with 2 copies, about 10 minutes,
with 4, about 20 minutes, and so on. There’s clearly inter-
ference when running multiple copies. This doesn’t have to
be multiple jobs running concurrently, it could even be
a single MPI job where the various processes are inter-
fering with each other. All of this increase in elapsed time
is due to increases in system time.

Fig. 4. Unaligned memory accesses cause interprocess
interference with Linux 2.6

Figure 5 shows the results of the same experiment
obtained from a Columbia 512p host running ProPack 3.6

and the Linux 2.4 kernel. There is absolutely no inter-
process interference with the older operating system, and
all the runs completed in under 3 minutes, which is less
time than a single run on ProPack 4.2. These experiments
were key to convincing SGI engineers that there was an un-
aligned access interference problem.

Fig. 5. Unaligned memory accesses do not cause interprocess
interference with Linux 2.4

Right after that user complained about her code running

slowly, one of our local SGI engineers [11] profiled the
system. Here’s a two line script that he ran as root to
profile system activity on CPUs 10 to 30:

cp /boot/System.map-`uname -r` ./System.map
cpuset -i /PBSPro -I profile.pl -- --no_dplace -c10-30 /bin/sleep 300

A copy of the System.map file is necessary in the local
directory to profile the kernel. The cpuset command in the
script creates a cpuset consisting of CPUs 10-30. This cpuset
is overlaid on top of CPUs already pre-assigned to the other
user job by the PBS batch scheduler (and the creation of an
overlaying cpuset on top of another user’s cpuset is the
primary reason why this script must be run as root).

Profile.pl is a Perl script that eventually uses pfmon to
get profiling information. Here’s the output from running
the profiling script:

Profiling output:
user ticks: 331447 57.21%
kernel ticks: 247947 42.79%
idle ticks: 3 0%
Using ./System.map as the kernel map file.
==
 Kernel
 Ticks Percent Cumulative Routine
 Percent
--
 244901 98.77 98.77 within_logging_rate_limit
 634 0.26 99.03 printk
 621 0.25 99.28 rcu_process_callbacks
 …

J. Chang 20

One sees that 43% of the time is spent in the kernel, and
of these 43%, approximately 99% of the time is spent in-
side a routine called within_logging_rate_limit. This
function determines whether to log a message or not. The
actual logging of the message takes about a quarter of
a percent and processing the unaligned access fault takes
another quarter of a percent of the kernel time. Everything
else is miniscure.

To see why so much time is spent in the within_log-
ging_rate_limit function, we look at the segment of code
taken from
/usr/src/linux/arch/ia64/kernel/unaligned.c:

/*
 * Make sure we log the unaligned access, so that user/sysadmin
 * can notice it and eventually fix the program.
 * However, we don't want to do that for every access so we pace
 * it with jiffies. This isn't really MP-safe, but it doesn't really have to
 * be either...
 */
static int
within_logging_rate_limit (void)
{
 static unsigned long count, last_time; ← count & last_time

 on hot cache line

 if (jiffies - last_time > 5*HZ)
 count = 0;
 if (++count < 5) { ← count updated every
 single time!
 last_time = jiffies;
 return 1;
 }
 return 0;
}

The problem is that both count and last_time are static
variables. “jiffies” is a kernel timing variable measured in
units of Hz. When the number of jiffies has incremented
past last_time by more than 5 Hz, count is reset to 0. Here,
count is incremented for every unaligned access, and as
long as count is less than 5, it updates “last_time” and
returns 1 to print the message. Now, since both “count” and
“last_time” are both static, whenever a process needs to
update “count” or “last_time,” it needs to invalidate all
other processes’ copies of that cache line. In the words of
kernel hackers, this hot cache line is zipping around the
system between processes that have unaligned accesses.
And because “count” is updated every single time, the in-
validation and contention on the hot cache line has to occur
whether an unaligned access message is logged or not.

After we pointed out the problem that unaligned memory
accesses can cause interference between concurrently run-
ning jobs to SGI engineers, they came up with the following
fix, which has now been incorporated into SLES10:

static int
within_logging_rate_limit (void)
 {
 static unsigned long count, last_time;

 if (jiffies - last_time > 5*HZ)
 count = 0;
 if (count < 5) {
 last_time = jiffies;
 count++; ← count updated ONLY if less than 5
 return 1;
 }
 return 0;
}

In this new function, count and last_time are updated
only if countis less than 5.This fix is enough to eliminate or
significantly reduce interference between jobs.

But more important than the kernel fix is to fix the
user’s code. So how can a user find the source of their
unaligned access? There are two methods: The first is that
the user can issue the command:

prctl --unaligned=signal

before running the application. This would cause a core
dump at the first instance of an unaligned access. If the
code is also compiled with –traceback and –g, then the
stack trace will contain both the routine name and line
number of the code that is causing the unaligned access.
Another method is to compile and link the code with the
following flag:

-Wl,--print-map

This will pass the --print-map option to the loader to
print the loadmap. Then, one can track down the addresses
given by those unaligned access messages via the loadmap
down to the corresponding variables within the code.

References

 [1] Y.-T. Chang and J. Chang, Getting Good Performance on
OpenMP and Hybrid MPI+OpenMP Codes on SGI Altix,
SGIUG 2005 Technical Conference and Tutorials, June
13-16, 2005, Munich, Germany.

 [2] J. Chang, Columbia Application Performance Tuning Case
Studies, SGIUG 2006 Technical Conference and Tutorials,
June 5-9, 2006, Las Vegas, Nevada.

 [3] SGI Altix 3000, http://www.sgi.com/products/servers/altix/
3000/

 [4] October 26, 2004 press release, http://www.sgi.com/ com-
pany_info/newsroom/press_releases/2004/october/worlds_f
astest.html,

 http://news.com.com/SGI+claims+lead+in+supercomputer+
race/2100-1010_3-5426813.html?tag=nl

Columbia Application Performance Tuning Case Studies 21

 [5] November 5, 2004 press release, http://news.com.com/IBM
+set+to+take+supercomputing+crown/2100-1010_3-5439523.
html

 [6] Top500, http://www.top500.org
 [7] B.-W. Shen, R. Atlas, J.-D. Chern, O. Reale, S.-J. Lin,

T. Lee, J. Chang, The 0.125 degree finite-volume general
circulation model on the NASA Columbia supercomputer:
Preliminary simulations of mesoscale vortices, Geophys.

Res. Lett., 33, L05801, doi:10.1029/2005GL024594 (2006).
http://www.agu.org/pubs/crossref/2006/2005GL024594.sht
ml

 [8] Bron Nelson, private communication.
 [9] Art Lazanoff, private communication.
 [10] MPI Standard, http://www-unix.mcs.anl.gov/mpi/
 [11] Scott Emery, private communication.

JOHNNY CHANG – NASA Ames Research Center/CSC. Johnny is a member of the Application Performance
and Productivity group at the NASA Advanced Supercomputing (NAS) Division located in Moffett Field,
California. He is part of a group that provides consulting service to the 700+ users of the Columbia
supercomputer – a luster of twenty 512p SGI Altix systems. His work includes code porting, debugging,
tuning and optimization, and code scaling. Johnny received his PhD in Chemical Physics from the University
of Texas at Austin, in 1985. He has published papers in multi-photon dynamics, quantum scattering, path-
integral methods, quantum functional sensitivity analysis, and, most recently, weather modeling.

 COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY Special Issue 2006, 13-21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

