
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 47-68 (2006)

1. INTRODUCTION

 PSNC is an internationally recognised leader in using,
innovating and providing HPC, Grid and network technolo-
gies to enable advances in science and engineering.
Focusing on data-oriented and computational intensive
science and engineering applications, PSNC is considered
as an international resource for applied Grid computing
research. It has been involved in Grid research from
the very beginning of the concept. In 2000, the European
Grid Forum (EGrid) was funded at the first kick-off
meeting in Poznań. Further, PSNC played an active role in
founding the Global Grid Forum (GGF), which was
eventually established by merging the EGrid with Grid
Asia and US Grid Forum. Since European Commission has
realized the importance of new Grid technologies and their
deployment on high-speed networks, PSNC researchers
have been working on new architecture, design and
development of technologies and systems for the Grid.
While promoting global adaptation of Grid environments
and tools PSNC has created many Grid-enabled applica-
tions and services for business and eScience at national and
European levels under the scope of many IST projects.
Some of them along with their objectives are mentioned
below:
 • GridLab was one of the biggest European research

undertakings in the development of application tools
and middleware for Grid environments. It produced
a set of application-oriented Grid middleware services
and toolkits providing capabilities such as dynamic
resource brokering, monitoring, data management, se-
curity, information and adaptive services, and more.

 • CrossGrid delivered tools and mechanisms for develop-
ing and running interactive Grid-enabled applications

addressing realistic problems in medicine, environ-
mental protection, flood prediction, and physics analysis.

 • HPC-Europa aims to provide advanced computational
 services to users dispersed across Europe,
 • InteliGrid delivers a generic Grid-based integration and

web semantic-based interoperability platform for creat-
ing and managing global-scale networked Virtual
Organizations for virtually partnering SMEs.

 Additionally, many national initiatives, supported by
the Polish State Committee for Scientific Research, were
launched for which PSNC researchers and developers have
created useful and ready-to-use eScience platforms and
services. Three of them:
 • PROGRESS Grid-portal framework for Grid processing
 and data management,
 • Virtual Laboratory, a distributed workgroup environ-

ment, with the main task of providing a remote access
to the various kinds of rare and expensive scientific
laboratory equipment and distributed computational and
data resources,

 • National Cluster of Linux Systems (CLUSTERIX),
a distributed new-generation PC-cluster (or meta-cluster),

were the most prominent ones.
 The essence of Grid middleware layer, located and
tightly connected with the optical network infrastructure
and its services, lies in its ability to provide a scalable,
secure, robust and dynamically-configurable advanced
communication platform and resource sharing. Therefore,
PSNC has created recently an internal open-source soft-
ware initiative, called Gridge – The Grid Enterprise Solu-
tion, promoting secure, flexible and adaptable components
created and maintained in all aforementioned projects.
The Gridge middleware developments at PSNC focus
primarily on re-engineering existing middleware func-

Programming Grid Applications with Gridge

Juliusz Pukacki*, Michał Kosiedowski, Rafał Mikołajczak, Marcin Adamski, Piotr Grabowski,
Michał Jankowski, Mirosław Kupczyk, Cezary Mazurek, Norbert Meyer,

Jarek Nabrzyski, Tomasz Piontek, Michael Russell, Maciej Stroiński, Marcin Wolski

Poznań Supercomputing and Networking Center, Poznań, Poland
*e-mail: pukacki@man.poznan.pl

Abstract: Not many fully integrated Grid solutions exist on today’s market. In this paper we present the PSNC’s Grid toolkit, called
Gridge, which is fully integrated Grid environment, consisting of tools and Grid services to enable challenging scientific and commercial
applications on the Grid.
Key words: Grid computing, Grid services, SOA

user
Tekst maszynowy
CMST 12(1) 47-68 (2006)

user
Tekst maszynowy
DOI:10.12921/cmst.2006.12.01.47-68

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

J. Pukacki et al. 48

tionality achieved in the above mentioned projects. This
paper presents the main components of Gridge. The way in
which they can be used to support dynamic applications on
the Grid is also presented. The rest of the paper is
organized as follows: in section 2 we describe Gridge tools
in detail. Section 3 presents an example application
scenario supported by Gridge. Section 4 shows behind-the-
scenes interactions of all the services in the scenario. We
conclude with section 5.

2. GRIDGE TOOLKIT

 Gridge Toolkit consists of the following tools and ser-
vices:
 • GridSphere Portal Framework (developed within Grid-
 Lab)
 • Grid Service Provider (GSP) (developed within Prog-

ress)
 • Grid Resource Management System (developed within

GridLab)
 • Grid Authorization Service (developed within GridLab)
 • Grid Mobile Services (developed within GridLab)
 • Grid Data Management System (developed within Pro-

gress)
 • Migrating Desktop (developed mainly within CrossGrid
 and continued in other projects).
 • Grid Monitoring System (Mercure) (developed within
 GridLab)
 • System level checkpointing library
 All the pieces are integrated with each other and follow
the same interface specification rules, license, quality as-
surance and testing, distribution etc. In the paper the Gridge
Toolkit is presented from a programmer’s point of view.
We also focus on the most important Gridge services and
show how they are exposed to the Grid world. Finally, we
demonstrate a real application scenario, in which almost all
the Gridge services take part.

2.1. User Access
 Users can access Grid infrastructure either through
portals, mobile devices or command-line clients. Two portal
frameworks are available to users: Grid Service Provider and
GridSphere Portlet Framework. Access through mobile
devices is also available.

1) Grid Service Provider: The user access philosophy in
Gridge is drawn around the concept of enabling multiple
independent user access applications, such as web portals,
standalone applications and mobile user interfaces for the
utilization by the users of the Grid infrastructure. In this
philosophy each user may execute his Grid work using any
of the available user interfaces and may be doing any part
of his work using any of these interfaces. Such an approach
required a special attention concerning the quick delivery
of important Grid data such as application descriptions or

job configurations and statuses, and concerning the con-
struction of a single point of entry to many independent and
sometimes also heterogeneous Grid environments. This
motivation led us to the design of the Grid Service Provider
(GSP) module [1]. GSP is a set of high level Grid services
whose primary task is to support various types of Grid user
interfaces in quick and seamless access to the data and
information flowing in from the lower level services.
Thanks to the introduction of GSP these data and
information can be easily shared between heterogeneous
user interfaces without having direct access to the lower
level services. For example, it is not necessary to contact
a Grid execution engine to check the configuration of
a running Grid jobs or to check their status: all this
information is stored in the GSP database and can be
quickly read and delivered to a user.
 GSP contains two high level services: the Job Sub-
mission Service and the Application Management Service
[2]. The Job Submission Service delivers functions for
computing job building, submitting them to the Grid for
execution and viewing the results. It allows to create jobs,
configure their tasks and set the requirements for Grid
environment resources. The Job Submission Service
features the Grid resource broker plug-in mechanism which
allows it to cooperate with multiple independent Grid
infrastructures, thus allowing the users to submit exactly
the same job to two different Grid environments. The task
of a Grid resource broker plug-in is to communicate with
the Grid execution engine in the communication protocol
used by that engine and to translate the job structure into
the language used by that engine. For example, a plug-in
for the Gridge Resource Management System is familiar
with GRMS access interface and with the XRSL language
used by that service. The Application Management Service
manages the Gridge application repository that can also be
shared between various independent user interfaces. An
application descriptor contains a reference to the ap-
plication’s executable and a set of its available, required or
optional arguments, required environment variables as well
as input and output files. One executable may be referenced
by many applications, and different application configura-
tions are viewed as independent applications. Both GSP
services support workflows: the Job Submission Service
allows to configure workflow jobs and send them for the
execution in the Grid, and the Application Management
Service allows to create descriptors for workflow ap-
plications and use them as the base for the creation of new
job configurations.

2) Grid Portal: In Gridge, the portal access to Grid services
is organized with the use of the GridSphere portal
framework [3]. Created by the Portals Work Package in the
GridLab Project [4], GridSphere leverages the most
relevant standards, best-practices and technologies to offer
a framework for developing Grid portals. One of the most

Programming Grid Applications with Gridge 49

exciting standards to gain adoption by the general
community is the Portlet Java Specification Request (JSR
168) [5]. The Portlet JSR defines an application program-
ming interface (API) and model for packaging and
presenting Web content as portlets. Portlets are Java
classes that have a clearly defined interface and life cycle.
Portlets are hosted by a portlet container and can be pre-
sented in a Web page in any manner supported by
the portlet container. The Portlet JSR makes it possible to
distribute and share Web applications more easily, creating
a means for collaborating on Web portal development on
a much larger-scale.
 The GridSphere Project [6] has also developed a ge-
neric framework for developing Grid portal applications
called Grid Portlets [7]. Grid Portlets offers developers
a collection of “portlet services” for performing tasks on
the Grid. These portlet services can be used to Grid-enable
any portlet web application. Grid Portlets provides a col-
lection of simple, easy-to-use, well integrated portlets that
showcase the functionality offered in Grid Portlets,
including portlets for retrieving credentials, monitoring
resources, submitting jobs and managing remote files.
 GridSphere can also be used as an environment to run
specialized portlets cooperating with the services of
the Grid Service Provider and of the Data Management
System (DMS). These portlets, developed with the use of
specially designed Portlet Framework that allows to run the
portlets also in a standalone mode, utilize the high level
functionality provided by GSP and DMS to organize more
user-friendly access to Grid services. The available portlets
that allow to access the functionality of the GSP and DMS
services include the “Applications” portlet which allows to
manage the Gridge application repository, “My computing
Jobs” portlet which allows to create and submit Grid jobs
on top of any application available in the repository and
“My data” portlet which allows to manage data files stored
by the Data Management System. In addition to these core
portlets, several specialized application portlets have been
developed as examples of user friendly portal interfaces to
Grid applications (see Fig. 1). GridSphere is presented in
detail in paper of M. Russell et al. in this journal (pp. 89-97).

Fig. 1. Specialized application portlet wizard

 The main motivation behind the introduction of
the Portlet Framework was to create a solution that sup-

ports developers of specialized user interfaces to different
Grid applications. Thanks to the architecture and
technology used by the framework developers of
specialized application portlets gain opportunity to create
new portlets and enable new Grid applications through
easy-to-use job configuration wizards on the portal within
several days [8]. The Portlet Framework together with the
GridSphere portal container and the Grid Service Provider
provide a flexible set of tools to construct web-based Grid
access environment. In simple scenarios, involving usage
of a limited number of simple applications, a GridSphere
installation with the Grid Portlets fulfills the requirements.
When the user access involves more sophisticated scenar-
ios with multiple different applications utilized by multiple
different user groups, the Grid Service Provider module
accessed via the portlets created with the use of the Portlet
Framework acts as a high level support for the administra-
tors, developers and users.

3) Mobile access: The typical Grid application incorporates
a large amount of data and heavy weight protocols that are
used in connection between entities in the Grid. Ad-
ditionally, processing such huge volumes of data requires
much processor power. On the other hand, mobile devices
are by nature “limited”: they have limited processing power,
limited memory, limited network connections. The afore-
mentioned problems led to development of a gateway
between mobile client and “heavy-weight” Grid world.
The gateway “talks” to Grid services in the name of the
mobile applications. It serves only the needed data in a
form and size suitable for mobile devices, securing only the
most important data. In our approach, it is a web ap-
plication (the Mobile Command Center, MCC) developed
as a Java servlet (also with portlet management interface)
integrated with GridSphere framework services (see
Fig. 2). The Mobile Command Center is a central point of
mobile architecture. All requests sent from the mobile
device are served there. If the request requires to call
the external Grid service (like Gridge Visualization Service
for Mobiles, Gridge Message Box, Gridge Authorization
Service or Gridge Resource Management Service), it is
translated into an appropriate form (e.g. GSI Grid Service
gSOAP call) and forwarded to the external service. On
the mobile side there is the J2ME MIDP 1.0 enabled
device, which is running our Gridge Mobile Client (GMC)
Midlet application. On devices that do not provide native
J2ME MIDP support it can be used device’s custom Java
with the ME4SE package, which allows to run J2ME
midlets under Java SE or Personal Java environments.
The client is a multithreaded Java application, which sends
HTTP requests to the server and displays responses in an
appropriate way. To avoid authenticating the user with
each request, there is a session maintaining (with cookies)
implemented in the midlet. All typed data is stored in
Record Management System (RMS) record stores to avoid
frequent retyping. After login to the server the user can choose

J. Pukacki et al. 50

Fig. 2. Gridge Mobile Client overview

which service he/she is going to use, choosing entries from
the menu (e.g. displaying folders from the Message Box,
Showing Visualization Service visualizations or displaying
the list of user jobs managed by GRMS). There is
a possibility to automatically parse messages for URLs
with visualizations – the user does not have to type
anything in this case. An application after finishing some
tasks can send the information about it via the Message
Box – the user gets this information as an SMS and using
GMC can browse his/her messages, choose the message
he/she is interested in, and display the message. If the mes-
sage contains information about visualizations, the user is
notified about it and can display one of them using
the client. If the visualization consists of more than one
image, the navigation slider is displayed and the user can
choose which “frame” of visualization he/she wants to
display. Each visualization frame can be cropped and
zoomed. The zoom operation can be repeated many times
and in such a case the crop operation is always performed
on the source image, not the one currently displayed on
the device. Such an aproach prevents from data loss
(the source images are high resolution: even 1000% zoom on
100 by 100 pixel screen are clear and can be easily read by
a user). The cropping procedure is also user-friendly.
A resizable image sub-frame is displayed, the user can
move it over the picture, resize the frame if needed and
request the needed part of the picture with one key press,
and the sub-picture is automatically enlarged to the device
screen resolution. Another part of the Gridge Mobile Client
is connected with the GRMS service. A user can display
a list of currently running jobs, start the job or cancel,
migrate the existing jobs. There is also a possibility to

display job information or history and register for notifi-
cation messages from the application.

2.2. Resource Management – GRMS
 The Gridge Resource Management System (GRMS) is
an open source meta-scheduling system, which allows
developers to build and deploy resource management sys-
tems for large scale distributed computing infratructures.
GRMS, based on dynamic resource selection, mapping and
advanced scheduling methodology, combined with feed-
back control architecture, deals with dynamic Grid environ-
ment and resource management challenges, e.g. load-
balancing among clusters, remote job control or file staging
support. Therefore, the main goal of GRMS is to manage
the whole process of remote job submission to various
batch queuing systems, clusters or resources. Finally,
GRMS can be considered as a robust system which pro-
vides abstraction of the complex Grid infrastructure as well
as a toolbox which helps to form and adapts to distributing
computing environments.
 GRMS (see Fig. 3) has been designed as an independ-
ent set of components for resource management processes.
It can take an advantage of various low-level core Grid
services, such as e.g. GRAM, GridFTP and Gridge
Monitoring System, as well as various Grid middleware
services, e.g. Gridge Authorization Service, Gridge Data
Management Service and more. All these services working
together provide a consistent, adaptive and robust Grid
middleware layer which fits dynamically to many different
distributing computing infrastructures. The GRMS imple-
mentation requires Globus software to be installed on Grid
resources, and uses Globus Core Services deployed on
resources: GRAM, GridFtp, MDS (optional). GRMS sup-
ports Grid Security Infrastructure by providing the GSI-
enabled web service interface for all clients, e.g. portals or
applications, and thus can be integrated with any other
middleware Grid environment. One of the main assump-
tions for GRMS is to perform remote jobs control and
management in the way that satisfies Users (Job Owners)
and their applications requirements as well as constraints
and policies imposed by other stakeholders, i.e. resource
owners and Grid or Virtual Organization administrators.
All users requirements are expressed within XML-based
resource specification documents and sent to the GRMS as
SOAP requests over GSI transport layer connections.
Simultaneously, Resource Administrators (Resource Ow-
ners) have full control over resources on which all jobs and
operations will be performed by appropriate GRMS setup
and installation. Note, that the GRMS together with Core
Services reduces operational and integration costs for
Administrators by enabling Grid deployment across
previously incompatible cluster and resources. Technically
speaking GRMS is a persistent service within a Tomcat-
/Axis container. It is written completely in Java so it can be

Programming Grid Applications with Gridge 51

deployed on various platforms. With the GAS, GRMS is
able to manage both, job grouping and jobs within
collaborative environments according to predefined VO
security rules and policies. With the Data Management
services from Gridge, GRMS can create and move logical
files/catalogs and deal with data intensive experiments.
Gridge Monitoring Service can be used by GRMS as an ad-
ditional information system. Finally, Mobile service can be
used to send notifications via SMS/emails about events
related to users’ jobs and as a gateway for GRMS mobile
clients. GRMS is able to store all operations in a database.
Based on this information a set of very useful statistics for
both end users and administrators can be produced. All
the data is also a source for further, more advanced analysis
and reporting tools.

Fig. 3. GRMS architecture

 GRMS is composed of the following modules:
• Job Receiver Module – provides GSI enabled web

service interface for GRMS. In job submission this
module is responsible for job description validation and
putting proper job to a queue. For workflow jobs it
creates graph representation of tasks and check its
correctness.

• Job Queue – stores jobs which are ready for execution.
It is prepared for implementation of any queue manage-
ment strategy and scheduling algorithms.

• Broker Module – it is the heart of GRMS. It steers
whole process of job submission: gets jobs from queue,
calls Resource Discovery Module to find appropriate
resources, evaluates resources to find ”the best” one,
creates environment for job execution by transferring
input data, calls Job Manager Module to monitor status
changes of job, after job is finished takes care on
transferring output data to location specified by a user.
It also provides information about jobs and their history
in the system.

• Resource Discovery Module – finds resources that
fulfill requirements described in Job Description. Re-
sources are described in an XML document which
contains parameters important from the job scheduling
point of view. Resource Discovery Module can be
configured to use many information sources. It can use
e.g. Globus MDS, iGrid service, Mercury Monitoring
Service, Adaptive Components Service, Testbed Infor-
mation Service.

• Job Manager Module – responsible for monitoring of
status changes of job, and for job control: job canceling,
suspending and resuming.

• Job Registry Module – responsible for storing all
information about jobs, and make it available for other
modules.

 An XML based GRMS Job Description (GJD) language
was specified to allow users defining the computing jobs and
resource requests. For each task there is a section in a job
descritpion document describing resource requirements and
user preferences used for dynamic resource discovery.
Another section defines the application: executable, input
and output files required, arguments, environment, etc.
 One of the most interesting features of GRMS is its
ability to deal with jobs defined as a set of tasks with
precedence relationships (workflows). With just one call
a user can submit the whole computational experiment that
consists of many independent application executions. Two
ways of expressing the dependencies between tasks are
possible. The first one is a direct way, based on the parent-
child relationship among tasks. In his case the execution of
a child depends on the status change of its parents.
The second way of expressing dependencies is associated
with a data flow between the tasks. Here a user can specify
that an output of one task becomes the input for the other
one. What is a beauty here is that a user does not have to
specify the exact file locations. However, in such a case it
is user’s responsibility to define file dependencies cor-
rectly. GRMS will reject execution of the job where data
dependencies contradict the parent-child relationship. As it
was already mentioned the basic way of introducing
dependencies between tasks is by defining the parent-child
dependencies. A very interesting and novel feature of
GRMS which distinguishes it from the other systems is that
execution of a child task can be triggered by any status
change of a parent task. So, not only a task termination can
trigger following executions. This feature is very useful in
many scenarios. For instance we can imagine that a user
would like to execute some application as soon as the other
one starts running – e.g. for client server communication.
The other example could be the flow of computation that
depends on the failure of execution of one of the tasks
(failover mechanisms).
 GRMS provides programming interfaces (API) to ap-
plication developers. One of the ways of application
integration with GRMS is to use the SAGA API (SAGA is

J. Pukacki et al. 52

presented in the paper SAGA: A Simple API for Grid
Applications on the pages 7-20 of this journal. Actually,
GRMS comes with SAGA and GAT adaptors. Here we
present the GRMS API as to be used directly from the ap-
plication. GRMS API and capabilities it provides for end
users can be divided into several logical groups according
to offered functionality:
• Job submission and control

This group of functionalities allows to submit and
control the whole jobs. Using the submitJob method
user can submit to the system a set of dependent tasks
constituting one logical job. If the job description is
valid (has no syntax and logical errors) the globally
unique job identifier is returned that unambiguously
identifies the job in the system and can be later used to
control it. While submitting the job GRMS supports
two phase commit mechanism. In this case the job
submitted to the system is not processed until the
processing will be approved by commitJob method.
Processing of the job can be canceled by cancelJob
method or temporary suspended and later resumed
(optionally with new job description) by suspendJob
and resumeJob methods. Because experiments (jobs)
controlled by GRMS can potentially consist of huge
amount of time consuming tasks the proper execution
of which depends not only on the correct job
description, but may be also broken due to some
unpredictable events, GRMS allows to restart the job,
skipping execution of previously finished tasks
invoking recoverJob method. For job submission and
then execution of tasks on resources GRMS uses the
time-limited user proxy, which can expire during the
processing of job causing lost of control on running
tasks and making impossible to start new ones. This can
happen very often, especially for long running jobs with
hard to predict finish time. Addressing the issue GRMS
allows to prolong the user proxy for the whole job
(refreshJobProxy method).

• Task control
GRMS allows to control every single task belonging to
a job. Execution of every task can be canceled
(cancelTask method) or suspended and resumed (sus-
pendTask, resumeTask methods). Processing of every
task, irrespective of precedence constraints resulting
from dependencies between tasks, can be also post-
poned until it will be approved by commitment
(commitTask method). The migrateTask functionality
allows to migrate single, running task to a “better”
resource (if such one exists) to improve task
performance or system utilization. To be migrateable
a task has to be checkpointable. We can distinguish
between two cases of job checkpoint supported by
GRMS. The first one is the situation when application
is checkpointed on demand. This situation is imple-
mented by relatively simple “checkpoint” web service

interface, location of which is registered in GRMS or is
able in proper way to serve checkpoint command sent
by Mercury Service. In both cases the whole process of
task migration is relatively simple. The task to be
migrated is checkpointed on the resource where it is
currently running and then restarted on a new one
pointed by the user or chosen by GRMS. GRMS is able
to migrate also applications that do not support the
aforementioned interfaces. In this case an application
has to perform checkpoint procedure periodically
saving files to disk and during the migration process it
is just killed by GRMS and then the execution is
resumed from the state saved in the last checkpoint file.
Both described above cases are typical examples of
application/user-level checkpointing, requiring from
the application developer to implement mechanisms for
storing application data to checkpoint files, and as-
sumes that checkpointing procedure is hard coded in
the application. The migration process can be per-
formed by GRMS according to a new job description
passed as the parameter. If the new job description was
not defined, GRMS tries to perform the request based
on the job description or the previous migration request.
Addressing many advanced scenarios GRMS is able to
handle tasks having some time constrains and require-
ments, like for example specified period of time when
the execution of task must be started or the duration of
task execution. The extendTaskExecutionTime method
allows to prolong the execution time of scheduled tasks.

• Listing jobs according to some criteria
GRMS returns a list of jobs (identifiers) belonging to
the user that invoked the request (getJobsList) or to a
specified project (getProjectJobsList). It is possible to
query for all jobs or a subset of jobs in given state in the
system. The list of jobs can be also limited to some
amount of last jobs.

• Listing tasks belonging to the given job according to
some criteria
The getTasksList returns collection of task identifiers
belonging to the given job. It is possible to narrow
the list down only to tasks in one of specified states.

• Managing tasks
This subset of GRMS functionality can be divided into
two groups. First of them gives possibility to register
(registerTaskApplicationAccess), unregister (unregis-
terTaskApplicationAccess) and query (getTaskAppli-
cationAccess) location of the web service implementing
checkpoint interface. The second group of methods
concerns dynamic management of files and directories.
In a real scenarios very often application doesn’t know
in advance names of checkpoint files or input files
produced by other tasks, because their names can
contain timestamps or iteration step of execution. Ad-
dressing such cases GRMS allows the application

Programming Grid Applications with Gridge 53

dynamically to add new files and/or directories
(addTaskFileDirs method) or to remove ones specified
in job description or dynamically registered in previous
calls (removeTaskFileDirs). Additionally it is possible
to query for files and directories registered for given
task specifying optionally some criteria (getTask-
FileDirs method).

• Getting information about jobs
The getJobInformation method returns complex informa-
tion concerning particular job. The following information
is available: the project to which a job belongs, distin-
guished name of the owner of the job, current status of
the job, time when the job was submitted and finished (if
it is known), message describing the cause of last error,
list of tasks forming the job, number of tasks and
description of the job.

• Getting information about tasks
The getTaskInformation method returns complex infor-
mation about the given task including history of its
migrations. General information is: type and status of
the task, times when the task was submitted and
finished (if they are known), time how long the user
proxy will be still valid, status of the task processing
request, description of last error, length of the full task
history. Because every task can be migrated many times
and can be executed during its life on different
machines GRMS provides the history of each task.
Every item of task history contains following informa-
tion: time when GRMS started processing a task on the
given resource, time when the task execution was
submitted to the local resource, times when the
execution started and finished on local resource (if
these times are known), description of task – part of job
description concerning the given task, array describing
co-allocation of subtasks (needed for mpichg tasks),
location of “checkpoint” web service interface regis-
tered for the task.

• Getting list of resources that meet user’s requirements
and criteria GRMS is able list resources that meet user
requirements expressed in the job description for a speci-
fied task (findResources method).

• Managing notifications
 GRMS provides also support for events notification.

Notification mechanisms is very general and designed
to allow clients to receive information in asynchronous
way. User can register for notifications concerning the
whole job (registerJobNotification) or single tasks
(registerTaskStatusNotification, registerTaskRequest-
StatusNotification). The difference except the obvious
one is that in case of tasks GRMS is able to send to
the registered clients two kinds of notifications: the
“status notification” connected with changes concerning
a life cycle of the task and the “request notification”
related to the performed GRMS request. Jobs have only

“status notifications”. Currently GRMS is able to send
notifications in two ways: using SOAP protocol and
writing to a remote file. Registered notifications can be
queried according to some criteria (getJobStatusNoti-
fications, getTaskNotifications), unregistered (unregi-
sterJobNotification, unregisterTaskNotification) and de-
tailed information about them can be provided
(getJobStatusNotification, getTaskNotification, getTask-
StatusNotification, getTaskRequestStatusNotification).

• Auxiliary functionality
 Functionality belonging to this group has no productive

character, but can be useful for testing and administra-
tive purposes. GRMS gives the possibility to check the
correctness of the job description (testJobDescription
method). In the case of incorrectness of description
GRMS returns the diagnostic information describing
the syntax or logical error. GRMS is able to return user
defined description of the service (getServiceDe-
scription) and to list all jobs in given state in the system
(getAllJobsList method).

 GRMS job description can be divided into several parts
describing the way the job should be processed as a whole.
Job description starts with general properties characterizing
the job in GRMS system. User has to specify a string
distinguishing the job from other ones. The name of a job
will be used by system as a part of final GRMS job
identifier. Optionally it is possible to specify the project,
a job belongs to or to specify if the processing of the job
needs commitment to be started. The job consists of set of
dependent task and job as well as each single task can have
notes containing informal and human readable descriptions.
Every task forming a job has a set of general properties. It
has to have an unique identifier, that distinguishes it from
other tasks. Additionally user can specify a type of the task
as a persistent or nonpersistent one. The difference is that
for persistent tasks GRMS doesn’t remove working
directories after they finish, what is the default system
behavior. Optional “extension” attribute allows to specify
in a transparent way that the task has to be started in
the working directory of another task, previously submitted
and executed as a persistent one. For every task it is
possible to specify if it is crucial for the processing of the
whole job and if its processing needs a commitment to be
started. Next optional section specifies requirements con-
cerning resources. If this section exists, making a ranking
of resources, which the task can be mapped to, GRMS
takes into consideration only resources that meet these
requirements, like minimal number of processors, operating
system, type of queuing system and many others. It is
possible to specify many sets of resource requirements for
each task, describing alternative characteristics of resource
that meet user’s requirements. Regardless of preferences
concerning static properties of resources every task can
have additionally hard and soft constraints being used to

J. Pukacki et al. 54

rank resources in multi-criteria scheduling process. Main
and obligatory part of description of each task is a section
concerning executable. For every task location of the
executable, which can be url to the physical location of
logical identifier, has to be provided. Additionally it is
possible to specify if the task is checkpointable or not and
all information needed for task execution: arguments,
environment variables, input and output files and directo-
ries including checkpoint ones and locations of standard
input, output and diagnostic streams. It is also possible to
express preferences and requirements concerning time of
execution, like for example duration of execution, start and
end times of a period during which the task must be started,
slot within a day when a task must be executed and others.
For each task it is possible to specify information about
other tasks it depends on and statuses of these tasks that are
required to trigger its processing.

2.3. Authorization Service – GAS
 The Gridge Authorization Service (GAS) is an authori-
zation system which can be the standard authorization
decision point for all components of a Grid system.
Security policies for all system components can be stored
in GAS. Using these policies GAS can return an authoriza-
tion decision upon the client request. GAS has been
designed in a way that makes it is easy to perform integra-
tion with external components and to manage security
policies for complex systems (see Fig. 4). Full integration
with the Globus Toolkit and many other Grid services
makes GAS an attractive solution for Grid envirnoments.

Fig. 4. GAS architecture

 As stated above an authorization service can be used for
returning an authorization decision upon the user request.
The request has to be described by three attributes: user,
object and operation. The requester simply asks if the spe-
cific user can perform the operation on the specific object.

Obviously, the query to an authorization service can be more
complex and the answer given by such service can be
complicated as well. By using the modular structure of GAS
it is easy to write a completely new communication module.
The GAS complex data structure can be used to model many
abstract and real world objects and security policies for such
objects. For example, GAS has been used for managing
security policies for many Virtual Organizations, for services
(like Gridge Resource Management Service, iGrid, Mobile
Services and other) and for abstract objects like communica-
tor conferences or HPC centers in Europe.
 The main goal of GAS is to provide a functionality that
would be able to fulfill most authorization requirements of
Grid computing environments. GAS is designed as a trusted
single logical point for defining security policy for complex
Grid infrastructures. As flexibility is the key requirement, it
is to be able to implement various security scenarios, based
on push or pull models, simultaneously.
 Secondly, GAS is independent of specific technologies
used at lower layers. It should be fully useable in environ-
ments based on Grid toolkits as well as other toolkits.
The high level of flexibility is achieved mainly through
the modular design of GAS and efficient data model, with
which one can define many scenarios and objects from
the real world. It means that GAS can use many different
ways for communication with external components and
systems and many security data models and hold security
policy on different types of storage systems. These features
make GAS attractive for many applications and solutions
(not only for those related with Grids). GAS has to be
the trusted component of each system in which it is used
and brings about that the implementation of GAS was
written in ANSI C. This choice makes GAS a very fast and
stable component which consumes not much CPU power
and little amount of memory.
 The main problem of many authorization systems is
their management. It is not easy to work with a complex
system in a user-friendly way. Based on many experiences
and the end user feedback the GAS administration portlet
(web application) is provided, which makes management as
easy as possible. Flexibility of this solution gives users
a full possibility of presenting only these security policies
which are important for them. The GAS management is
possible in two other ways: by the GUI GTK client and by
the command line client.
 For Globus Toolkit users, GAS provides a set of plug-
ins for Globus components, (for example: gatekeeper and
jobmanager plug-in). These plug-ins communicate with
GAS in a secure way and can ask GAS about an authoriza-
tion decision.

2.4. Monitoring Services – Mercury
 The Mercury Grid Monitoring System has been devel-
oped within the GridLab project. It provides a general and
extensible Grid monitoring infrastructure.

Programming Grid Applications with Gridge 55

 Mercury Monitor is designed to satisfy specific require-
ments of Grid performance monitoring: it provides
monitoring data represented as metrics via both pull and
push model data access semantics and also supports
steering by controls. It supports monitoring of Grid entities
such as resources and applications in a generic, extensible
and scalable way.
 The Mercury Monitoring is designed to satisfy require-
ments of Grid performance monitoring: it provides moni-
toring data represented as metrics via both pull and push
access semantics and also supports steering by controls. It
supports monitoring of Grid entities such as resources and
applications in a generic, extensible and scalable way. It is
implemented in a modular way with emphasis on
simplicity, efficiency, portability and low intrusiveness on
the monitored system.
 The aim of the Mercury Monitoring system is to sup-
port the advanced scenarios in Grid environment, such as
application steering, self-tuning applications and perform-
ance analysis and prediction. To achieve this the general
GGF GMA architecture is extended with actuators and
controls. Actuators are analogous to sensors in the GGF
GMA but instead of gathering information, they implement
controls and provide a way to influence the system.
 The architecture of Mercury Monitor is based on the
Grid Monitoring Architecture (GMA) proposed by Global
Grid Forum (GGF), and implemented in a modular way
with emphasis on simplicity, efficiency, portability and low
intrusiveness on the monitored system.
 The input of the monitoring system consists of meas-
urements generated by sensors. Sensors are controlled by
producers that can transfer measurements to consumers
when requested.
 Sensors are controlled by producers that can transfer
measurements to consumers when requested. Sensors are
implemented as shared objects that are dynamically loaded
into the producer at run-time depending on configuration
and incoming requests for different measurements.
 In Mercury all measurable quantities are represented as
metrics. Metrics are defined by a unique name such as
host.cpu.user which identifies themetric definition, a list of
formal parameters and a data type. By providing actual values
for the formal parameters a metric instance can be created
representing an entity to be monitored. A measurement
corresponding to a metric instance is called metric value.
 Metric values contain a time-stamp and the measured
data according to the data type of the metric definition.
Sensor modules implement the measurement of one or
more metrics. Mercury Monitor supports both event-like
(i.e. an external event is needed to produce a metric value)
and continuous metrics (i.e. a measurement is possible
whenever a consumer requests it such as, the CPU tempera-
ture in a host).
 Continuous metrics can be made event-like by request-
ing automatic periodic measurements. In addition to

the functionality proposed in the GMA document, Mercury
also supports actuators.
 Actuators are analogous to sensors but instead of taking
measurements of metrics they implement controls that
represent interactions with either the monitored entities or
the monitoring system itself. In addition to all mentioned
features Mercury facilitates steering.

2.5. Mobile User Support
 Mobile software development in Gridge (see Fig. 5) is
focused on providing a set of applications that would
enable communication between Mobile devices, such as
cell phones, Personal Digital Assistants (PDA) or laptops
and Grid Services on the other side. This class of ap-
plications is represented by clients running on mobile
devices, mobile gateways acting as a bridge between
clients and Grid services as well as additional specialized
middleware services for mobile users.

Fig. 5. Mobile Services architecture

 The main goal of the services is to make use of small
and flexible mobile devices that are increasingly used for
web access to various remote resources. The system provides
Grid access mechanisms for such devices. This requires
adoption of the existing access technologies like portals for
low bandwidth connectivity and low level end-user
hardware. The mobile nature of such devices also requires
flexible session management and data synchronization.
The system enhances the scope of present Grid environ-
ments to the emerging mobile domain. Utilizing new
higher bandwidth mobile interconnects, very useful and
previously impossible scenarios of distributed and col-
laborative computing can be realized. To achieve this and
taking into consideration some still existing constraints of
mobile devices, the Access for Mobile Users group is
developing a set of applications in the client-server model
with the J2ME CLDC/MIDP- java client, and portlet server
working with GridSphere. This set allow us to manage end

J. Pukacki et al. 56

user Grid jobs (steer an application) or view messages and
visualizations produced by Grid applications on device
such simple as standard mobile phone. The second group of
developed services is tightly connected with end user
notifications about various events in Grids. Events like:
the information about user application is started or finished,
the visualization is ready for viewing or waiting for new
data, can be send to end users using various notifications
way. It can be Email, SMS, MMS, or message of one of
Internet Communicators like AIM, Yahoo, ICQ, Jabber etc.
(including most popular in Poland Gadu-Gadu and Tlen).
Mobile services gives also end users possibility to start
a conference concerning aforementioned event between
users of given virtual organization (including conferences
between clients of different communicators).
 The unique possibility of giving access to Grid re-
sources for users of relatively weak devices is one of
features that distinguish Gridge mobile applications from
other Grid systems. Moreover, the used technology, Java 2
Micro Edition – Mobile Information Device Profile (J2ME-
MIDP) applications (midlets) on the client side allows to
develop flexible, possibly off-line working programs that
may be used on a wide range of devices supporting J2ME.
Using the MIDP compliant device internal repository for
storing data, gives the user possibility to use it later in off-
line state and prepare the data, to be sent in on-line state.
The Mobile Command Center (MCC) that acts as a gate-
way between mobile client and Grid services is developed
in Java as a GridSphere portlet (see Gridsphere.org) with
separate “mobile” context. MCC automatically grabs the
device profile (like device class, screen size, color depth,
etc), this information is used during forwarding the request
from mobile device to Grid services (mainly GSI-enabled
Web Services like Gridge MessageBox, Visualization
Service for Mobiles or Gridge Resource Management
System). Services that can be accessed from mobile device
using MCC belong to two groups: the first group consists
of Grid services that were adopted to use with mobile
devices, the second group are services developed for use
only with mobile devices. The Visualization Service for
Mobiles belong to second group and is used to view
the application output in form of visualization prepared
exactly according to the User’s device capabilities. The
advantage in this case is as follows: the large amount of
data is not sent via weak GPRS connections to the device
that cannot store it in the memory and cannot display it
correctly. First group of services consists of Gridge
Resource Management System and Notification and
Messenger Service. The first service can be used in ‘Col-
laborative scenario’ – the user can steer the application
(even not being an owner) from mobile device. He/she can
get the jobs list, migrate, resume, suspend, cancel, edit,
view history and submit new job on the basis of
edited/modified description of already finished jobs. Using
GRMS together with Notification service the user can

register for user notifications related to the running jobs. In
this way the user is notified about important events
occurring in the Grid (like jobs status changes, application
output availability). These notifications can be send as
Email, SMS and Internet Communicator (AIM, Yahoo etc)
messages to the user. Using the Messenger Service it is
possible also to make a conference between users of Vir-
tual Organization defined in Gridge Authorization Service
even if they use different communicators.

2.6. Data Management
 Data storage, management and access in Gridge envi-
ronment is supported by the Gridge Data Management
Suite (DMS). This suite composed of several specialized
components allows to build a distributed system of services
capable of delivering mechanisms for seamless manage-
ment of large amount of data. This distributed system is
based on the pattern of autonomic agents using the ac-
cessible network infrastructure for mutual communication.
From the external applications point of view DMS is a vir-
tual file system keeping the data organized in a tree struc-
ture. The main units of this structure are metadirectories,
which enable to put a hierarchy over other objects and
metafiles. Metafiles represent a logical view of com-
putational data regardless of their physical storage location.

Fig. 6. Gridge Data Management System architecture

 As shown in Fig. 6 the Data Management System
consists of three logical layers: the Data Broker, which
serves as the access interface to the DMS system and
implement the brokering of storage resources, the Metadata
Repository that keeps information about the data managed
by the system, and the Data Container, which is responsible
for the physical storage of data. In addition, DMS contains
modules which extend its functionality to fulfill the enter-
prise requirements. These include the fully functional web-
based administrator interface and a Proxy to external
scientific databases. The Proxy provides a SOAP interface

Programming Grid Applications with Gridge 57

to the external databases, such as for example those
provided by SRS (Sequence Retrieval System) [9].
 The Data Broker is designed as an access point to
the data resources and data management services. A simple
API of the Data Broker allows to easily access the func-
tionality of the services and the stored data. The Data
Broker acts as a mediator in the flow of all requests coming
from external services, analyzes them and eventually
passes to the relevant module. The DMS architecture
assumes that multiple instances of the Data Broker can be
deployed in the same environment, thus increasing the ef-
ficiency of data access from various points in the global
Grid environment structure.
 The Metadata Repository is the central element of
the Gridge distributed data management solution. It is re-
sponsible for all metadata operations as well as their
storage and maintenance. It manages metadata connected
with the data files, their physical locations and transfer
protocols that could be used to obtain them, with the access
rights to the stored data and with the metadescriptions of
the file contents. Currently each DMS installation must
contain a single instance of the Metadata Repository, which
acts as a central repository of the critical information about
the metacatalogue structure, user data and security policy
for the whole DMS installation.
 The Data Container is a service specialized towards
the management of physical data locations on the storage
resources. The Data Container API is designed in a way to
allow easy construction and participation in the distributed
data management environment of storage containers for
different storage environments. The Data Containers
currently available in the DMS suite include a generic file
system Data Container, a relational database Data Container
and a tape archiver Data Container. The data stored on
the various storage resources can be accessed with one of
the many available protocols including such as GASS, FTP
and GridFTP.
 The Proxy modules are services that join the functional-
ity of the Metadata Repository allowing to list the available
databanks, list their content, read the attached metadata
attributes and to build and execute queries, and of the Data
Container to provide the data using the selected data
transfer protocol. Such Proxy container are highly custom-
ized towards the specific platform they are working with to
allow building complex queries and executing operations
on the found entries.

2.7 Accounting – VUS
 Identification of users in any system is necessary for
accounting and security reasons, e.g. in order to charge for
used resources and tracing unfair behavior. On the Grid
level, the user is uniquely identified by subject of his proxy
certificate (so called Distinguished Name – DN). The proxy
may also contain some additional information related to

the identification, like e. g. name of a Virtual Organization
on behalf which the user acts. On the other hand, on
the operating system level, the user is identified by user
account, on which the processes performing user requests
are run. Thus we face problem of mapping global user
identity (DN) to a local identity (account). The simplest
solution is 1-1 mapping, which means the user must have
a “personal” account on each node in the Grid (this solution
is implemented by Globus gridmap file). This is not
scalable and hard to manage in case of bigger systems for
obvious reasons. Another simple approach is n-1 mapping,
where many users may be mapped to the same account.
This is usually not sufficient, even if only users of the same
organization are mapped to the same account. The men-
tioned accounting and security requirements are not
fulfilled and moreover, problem of unwanted interference
of different users’ jobs occur.

Fig. 7. Virtual User System architecture

 The Virtual User System – VUS [10] addresses the prob-
lems mentioned in the above paragraph. VUS is an exten-
sion of Globus GRAM (gridmap callout) and allows run-
ning jobs without having a “personal” user account on
a node (see Fig. 7). First, the user is authorized by querying
set of Authorization Plugins. The example plugins are grid-
mapfile (allows for backward compatibility with standard
Globus mechanism) and GAS (allows for integration of
VUS and GAS). The next step is selection of local account.
The “personal” accounts are replaced by “virtual” ones, that
are mapped to users only for time needed to fully process a
job. The Account Manager assures that only one user is
mapped to a particular account at any given time. The his-
tory of user-account mappings is stored in a database, so that
accounting and tracking user activities are possible.
 The local VUS database was designed to store both
standard and non standard accounting data types. The stan-
dard accounting may be periodically gathered from the
local accounting (operating system or local scheduling
system level) and merged with global user identity by
Accounting Module scripts. Then, the accounting may be
published via webservice interface.

J. Pukacki et al. 58

2.8 System level checkpointing
 Checkpointing provides a service that allows the system
administrator or resource management system to store
the application state image at any point of computation.
The application state image should allow restarting
the computation from the point defined by the content of
the image. Checkpointing is a desired technology and
PSNC has already been involved in the research and
development activities in that field since year 2000. By
now PSNC has developed two checkpointing packages for
Solaris OS and one package for SGI Altix systems running
under the SGI ProPack environment:
• psncLibCkpt is a user-level library that provides

checkpointing functionality for Solaris 8 OS. The core
part of the psncLibCkpt is based on the libCkpt
library.The most important novelty of the psncLibCkpt
is the ability to checkpoint and restart multi-process
programs that utilize System V IPC objects to mutual
communication and synchronization. It is our first
product in which we have introduced the virtualization
of identifiers and keys related to processes and System
V IPC. Thanks to that, when the program is recovered,
it is cheated that the identifiers have not changed (even
though due to technological reasons, it is very likely
that they have). To utilize the psncLibCkpt library,
the program has to be recompiled against the library
and the only modification of source codes encompasses
replacing with programs written in the name of
the main() function with the ckpt_target() name. The li-
brary is designed to be used n the C language. No
special installation or deployment activities are required
so the library can be used even by any regular, not
privileged user. The package has been developed as part
of the PROGRESS project.

• psncC/R is our first kernel-level (system-level) check-
pointing package. The product is aimed at Solaris 8 and
9 OS running on UltraSparc CPU. The main advantage
of the kernel-level approach is full transparency for
programs that are to be checkpointable and independent
of the programming language that was used to write
these programs. From the end-user’s point of view, the
utilizing of kernel-level checkpointing package is really
convenient and simple but requires some deployment
activates that have to be done by the system administra-
tor. Similarly to psncLibCkpt, that package has been
developed within the PROGRESS project.

• Altix C/R is a kernel-level checkpointing package
designed for Altix systems equipped with IA64 proces-
sors and running under the ProPack environment
(a Linux-based environment prepared by SGI). Cur-
rently we have versions of our package that works with
ProPack based on linux kernel 2.4 as well as with
a more recent ProPack that is based on linux kernel 2.6.
The package is characterized by all features typical for

kernel-level approach. It is easy to use, there is no
assumption on the availability of source codes or
the programming language that was used to write the
programs that are to be checkpointed. The package has
to be deployed by the system administrator. The pack-
age allows to do checkpoints of multi-process programs
that communicate through System V IPC objects.
Additionally, the idea of virtualization of some system
global keys and identifiers has been employed in that
product as well (advantages of such virtualization are
the same as in case of the psncLibCkpt library).
The package has been developed as part of the SGIGrid
project but we intend to further extend the functionality
of that package also beyond the SGIGrid project.
Currently we are making every effort to add support for
programs that use threads and ‘local’ sockets. Such
features would allow us to prepare the package with
the capability of doing checkpoints of some MPI pro-
grams.

 Contemporary Grid environments are featured by an
increasingly growing virtualization and distribution of re-
sources. Such situations impose greater demands on load-
balancing and fault-tolerant capabilities. The checkpoint-
restart mechanism seems to be the most intuitive tool that
can fulfill the specific requirements. Unluckily the Grid
environments suffer from the lack of a well-defined
interface to the existing and future checkpointing packages
nowadays. Therefore the aim in CoreGrid project is to
define the high-level checkpoint-restart Grid Service and to
locate it among other Grid Services. We defined the Grid
Checkpointing Architecture that encompass both, the ab-
stract model of that service and the lower layer interface
that allows the service to cooperate with the diverse
existing and future checkpoint-restart tools.

3. APPLICATION SCENARIO
USING GRIDGE TECHNOLOGY

 Using the Gridge, application developer has an op-
portunity to build complex, advanced Grid application
scenarios. In this section, a master-slave task farming
scenario using some Gridge services directly from a user
application is presented. Since it is not possible to show all
the features of the Gridge in one scenario we present most
important API calls to services. In order to simplify the
presentation of the scenario we neglect the nature of
computation performed by the application.
 General idea of the scenario is to sketch out the
standard use-cases of work with Gridge services. A stan-
dard use case consists of such operations as submitting
a job, staging the job files, starting the job on a resource or
set of resources, controlling the job, migrating it if neces-
sary, etc. There are several methods of application
submission using Gridge. An application developer can

Programming Grid Applications with Gridge 59

choose simple command line clients for testing, but a user
could prefer GUI such as portal based access.
 When the application is started, it can communicate
with Gridge services in order to request a variety of actions
to be performed on user’s behalf. All the services act on
behalf of the application and Grid user. Of course the
applications still compete for resources, but the whole
process of resource management is managed in a configur-
able way by Gridge services according to rules and
policies defined by a Grid administrator.
 In the proposed master-slave scenario, the job is
submitted to Grid, using GRMS metascheduler. GRMS is
responsible for choosing the best resource for the job and
for remote execution of application. Since GRMS is equip-
ped with the workflow engine it can handle jobs that
consist of many tasks (separate applications). In the
example described below the job consists of two
applications – Master and Slave. Slave is launched as soon
as Master is running on one of Grid resources. Master
controls the execution of the experiment in a few ways:
• Monitoring progress of the Slave application
• Migrating the Slave application due to decrease of

application performance on current resource
• Spawning additional jobs based on some internal indi-

cators
 To serve the application calls, not only application–
service communication takes place, but there are also a lot
of interactions between services. For instance each usage of
remote service function is authorized by the GAS au-
thorization service.

3.1. Job submission
 The first step of job submission to the Grid, is to
describe an application in a way readable by GRMS. Job
Description accepted by GRMS is an XML document
which can be constructed by user, or automatically gener-
ated by portal according to XML schema. The description
of the job for the presented scenario, could look like
example below:

<?xml version="1.0" encoding="UTF-8"?>
<grmsJob appid="MYJOB">
 <task taskid="MASTER">
 <resource>
 <hostname>host1.man.poznan.pl</hostname>
 </resource>
 <executable type="single">
 <execfile name="master">
 <url>file:////bin/master</url>
 </execfile>
 <arguments>
 <value>--xf</value>
 <value>--verbose</value>
 <file name="parameters" type="in">

 <logicalId>master_param1</logicalId>
 </file>
 </arguments>
 <environment>
 <variable name="SLAVE_ID">SLAVE</variable>
 </environment>
 </executable>
 </task>
 <task taskid="SLAVE" commitWait="true">
 <resource>
 <applications>
 <application>Slave</application>
 </applications>
 </resource>
 <executable type="single"
 checkpointable="true">
 <execfile name="slave">
 <url>file:////bin/slave</url>
 </execfile>
 <arguments>
 <value>2</value>
 <value>25</value>
 <file name="input1" type="in">
 <logicalId>input_from_slave1</logicalId>
 </file>
 <file name="output1" type="out">
 <logicalId>output_from_slave1</logicalId>
 </file>
 </arguments>
 </executable>
 <workflow>
 <parent triggerState="RUNNING">MASTER
 </parent>
 </workflow>
 </task>
</grmsJob>

 There are two tasks in the job description: MASTER
and SLAVE. In a resource requirement section of Master,
host name is specified directly, but for Slave, the machine
to execute an application will be chosen from the list of
resources that have the specified application installed
locally (dynamic resource discovery). Executable descrip-
tion contains information about location of file, arguments
of the execution, input files required and generated output.
Workflow section in the SLAVE task, denotes that Slave
has one parent (MASTER task) and will be executed as
soon, as the Master passes to the RUNNING state. Of course
it is possible to define more than two tasks and with very
complex precedence constraints – everything is up to the
application developer. Tasks can communicate with each
other or can be entirely independent, for instance one can
define two independent pairs of Master and Slave in one job
description. There is only one condition: Maser has to know
the identifier of Slave task, but that requirement is very

J. Pukacki et al. 60

simple to meet (e.g. using environment variable). Detailed
information about rules of job description construction can
be found in GRMS User’s Guide [11].

1) Command-line client: The simplest way to submit the
job to the Grid and to control its execution is to use simple
comand-line client (see Fig. 8) offering access to GRMS
functionality from console. Detailed information concerning
installation, configuration and usage of GRMS comand-line
client can be found in GRMS Admin’s Guide [12]. Having
the client installed and configured properly user has to
create proxy invoking grid-proxy-init command from Globus
toolkit and then is able to submit job simply typing fol-
lowing command:

./ws_client.sh submit_job <jobDescFile>

replacing <jobDescriptionFile> with path to the file containing
description of a job to be submitted. If the submission
process succeeded, GRMS returns the job identifier.

[piontek@druid bin]$./ws_client.sh submit_job ../gridge/master_slave.xml

– Your DN: /C=PL/0=GRID/0=PSNC/CN=Tomasz Piontek

– Service URL: https://druid-bis.man.poznan.pl:8442/axis/services/grms

– Job submitted successfully, jobId=1085556664951_MYJOB-1620

Fig. 8. GRMS job submission with command-line client

2) Mobile client: Another possibility of launching the
application, is using Gridge Mobile Client from Gridge

Fig. 9. GRMS job submission with Gridge Mobile Client

services and tools (see Fig. 9). Detailed information about
installing and using GMC can be found in Gridge Mobile
Client User’s Guide [13]. As the first step after launching
the midlet, the user should login to Mobile Command
Center gateway, which takes care of forwarding user’s
command to appropriate services. After successful login
the user can open the last used GRMS job description file,
which is stored in device persistent memory or load the list
of previously submitted jobs from the GRMS service and

use the job description of one of them. It is also possible to
create a new job description, however taking into
consideration mobile device typing limitations it is better to
load it in one of aforementioned way and alter only impor-
tant parts of the file. After preparing the job description
the user can submit the job using "Submit" command from
the menu. The job is submitted and the information about
current status of the job is displayed on mobile device
screen.

3.2. Application runtime
 When the job is submitted to GRMS, metascheduler is
taking care of the process of the applications execution, in
the proper place, and in the correct order. At first,
application of task MASTER is submitted, and as soon as it
starts running on the selected machine, Slave is executed.
The main goal of the Master is to control the application
flow – of course it can have computational code too. After
activation it calls GRMS to register for receiving status
changes of Slave application. To receive notifications the
application can implement appropriate web service inter-
face, or read file accessed by GRMS via http/https interface
of GASS server. It should be described by application in
the register call using notification parameter:

NotificationId registerTaskStatusNotif(
 JobIdentifier jobId,
 TaskIdentifier taskId,
 TaskStatusNotif notification);

TaskStatusNotif type describes how GRMS should send
required notifications to client – type of notification
interface, address of client’s interface, message format.
Notifications about status changes can also be sent to
a person responsible for application submission. In that
case, it is realized using SMS text messages, e-mails or
internet communicator messages. To register application
owner for such notifications, two calls to different services
are needed. First the Notification Service has to be
registered in GRMS as a destination point for notification
events concerning changes of statuses of the given task.
Then, knowing the newly created GRMS notification
identifier, it can be called the Notification service (one of
Gridge Mobile Services). Using this call the service can set
the desired message format and sending way. If the call is
not done the service assumes that default values should be
used. Default value for message format is stored in
Notification service properties file. The default notification
is stored in per user manner in Gridge Message Box user
profile service. Each message can be sent in one or more
notification way and stored inside Message Box for further
retrieval with Gridge Mobile Client application or Message
Box administration portlet. Aforementioned call to Notifi-
cation service is:

Programming Grid Applications with Gridge 61

void registerNotification(
 NotificationRequest request);

NotificationRequest type contains information needed for
proper identifying and sending the notification message to
the user.
 In the meantime, as soon as the Master moved to
RUNNING state, execution of the Slave was triggered. But
application developer, specified in the job description that
task should be suspended until GRMS receives ‘task
commit’ call from the client (commitWait attribute of the task
tag). That mechanism is very useful to synchronize two
tasks – prevent from loosing notifications about status
changes. So in the next step, Master calls GRMS to release
Slave:

void commitTask(
 JobIdentifier jobId,
 TaskIdentifier taskId);

 The Slave application is considered to do an actual
computation. But it is also instrumented with some code,
responsible for communication with the middleware
services. It will show a dynamic nature of application
behavior in Grid environment built with the Gridge
services and advantages of that solution. Master is going to
manage computation made by Slave but there is no direct
communication between them – all steering goes through
services. To make it possible the Slave registers two
metrics in the Mercury Monitoring Service. First one
represents performance – how fast the computations are on
the chosen machine, which can vary mainly with changing
load of a CPU, but also with many other factors. Second
metric, called “progress”, will be used for presenting
current state of computations made by the Slave. In order
to be able to publish metrics the Slave has to connect to
Local Monitor and register itself as a producer using the
following method:

int prod_app_start(
 const char *prog_name,
 int tid,
 const char *job_id);

providing additional information like: name of the ap-
plication process, thread identifier in case of multithreaded
application, job identifier (used only if the application
sensor is configured to accept the job id sent by the
application). Progress and performance metrics are
registered using the same call:

int prod_app_register_metric_simple(
 const prod_app_metric_desc *desc);

The desc structure describes the control that the application
provides. This structure contains information about the

name of the metric, its data type and measurement type.
Because in opposite to the progress metric, the per-
formance one has continuous character this metric must
additionally define the method implementing the sensor
with its parameters. The sensor method sends the buffer
containing value of calculated metric using method:

int prod_app_send_result(
 prod_app_cookie *cookie,
 mon_buffer *value,
 const struct timeval *timestamp);

where cookie is an opaque value identifying information
and control execution requests, value and timestamp have
intuitive meanings. The values of progress metric are sent
to the Master using method:

int prod_app_send_event(
 const char *metric,
 const mon_arg_list *args,
 mon_buffer *value,
 const struct timeval *timestamp);

where metric is the name of the metric, args – the metric
arguments, value – buffer containing the value to send and
timestamp – timestamp when the event was generated.
 For the application executed on machine by GRMS,
working directory is created dynamically. After its termina-
tion, in default case, the working directory is removed.
Because of that, it is important to define in job description,
location where the output data (files or whole directories)
should be transfered. GRMS is able to handle transferring
output to specified destination, expressed as a physical
URLs (GridFtp) or a logical location in Data Management
System. But not always output data file names are known
a priori, before job execution. To resolve that problem it is
possible to register in GRMS information about additional
files (or directories) that will be generated by application.
The call to GRMS looks as follows:

void addTaskFileDirs(
 JobIdentifier jobId,
 TaskIdentifier taskId,
 FileDir[] items,
 boolean overwrite);

Type FileDir describes file or directory: name, url or logical
identifier, permissions etc. It is obvious that GRMS provides
also API calls for viewing information about registered data,
and for entries removal. If additional output is going to be
stored in Data Management System, location of registered
output is expressed as logical identifier. That identifier
should be received from DMS using following call:

NodeElement addUserDirectory(
 String name,

J. Pukacki et al. 62

 int currentDirID);
FileElement addUserFile(
 String name,
 int currentDirID);

 These methods create in Data Management System
suitably logical directory and logical file with given name
and place it in specified currentDirID directory. Both method
returns structure containing among other things the numeri-
cal identifier of new created entry.
 It assures reservation of this unique name for generated
file or directory. In proper time GRMS will receive from
DMS location where data should be transfered using fol-
lowing call:

URI makeUserFileLocation(
 int fileID,
 long fileSize,
 long timePeriod,
 boolean isExactSize,
 String protocol);

specifying logical identifier of file, which the location is
created for, and information about size of the file and
required protocol that will be used to transfer data. If the
logical file has already registered location, it can be obt-
ained from DMS invoking following method:

URI getUserFileLocation(
 int fileID,
 long timeLock,
 String protocol);

that returns location of the file identified by given identifier
and accessible by specified protocol. DMS guaranties that
the file under the returned location will be accessible for
timeLock time.
 The last action the Slave can do in its initialization
phase is registering interface for application level check-
point. As it was mentioned before, application can be
checkpointed (on application level) in a few different ways.
In the most simple case application is periodically storing
checkpoint files, and process of checkpointing reduces to
killing application process. The alternative way is to
instrument application with web service interface that can
be used by external service to invoke the checkpoint
procedure. When application receives such call it can store
an appropriate data and then exit. To register web service
interface the following GRMS API call should be used:

void registerTaskApplicationAccess(
 JobIdentifier jobId,
 TaskIdentifier taskId,
 TaskApplicationAccess appAccess);

In TaskApplicationAccess type argument, address of interface is
provided.

 It is not allways possible to call application using web
service interface. for instance because of firewalls, or in
case when the application is running on a cluster node with
no public IP address. In a such cases the only way for
checkpointing is to use Mercury Monitoring System. For
that purpose the application should be instrumented with
ability to react in a proper way on checkpoint control sent
by Monitoring System. The Mercury API provides two
functionally equivalent methods for application developers:

int prod_app_register_ctrl_simple(
 const prod_app_ctrl_desc *desc);
int prod_app_register_ctrl(
 mon_metric_def *def,
 prod_app_check check,
 prod_app_sample execute);

 Both of them can be used to register a new control
together with the callback function to activate when the
control is invoked. Description of the control to be
registered contains information about the name of the
control, its type, function to call for checking control
parameters, number of these parameters, their types and the
control execution function. Basing on this general
mechanism it is possible to checkpoint application
registering a predefined checkpoint control and implement-
ing inside the callback function the application level
checkpointing. The checkpoint request can be sent invok-
ing general method:

int monp_cmd_execute_s(
 monp_conn *conn,
 const char *name,
 mon_arg_list *args,
 uint32_t *metric_id);

that specifies the name of the control and its arguments.
 After all initialization procedures are done, Master’s
role is to monitor metrics registered by the Slave, and react
on its changes, while the Slave is doing actual computation.
To be able to do aforementioned monitoring Master has to
connect to appropriate producer using the following method:

monp_conn *client_connect(
 const char *url,
 const char *auth_meth,
 char **wrappers, int timeout);

and providing needed parameters like: location of the
producer, authorization method, connection timeout. Being
connected Master can query for continuous performance
metric invoking method:

int monp_cmd_query_s(
 monp_conn *conn,
 const char *name,
 mon_arg_list *args,
 uint32_t *metric_id);

Programming Grid Applications with Gridge 63

and subscribe for progress events invoking folowing se-
quence of calls:

int monp_cmd_collect_s(
 monp_conn *conn,
 const char *name,
 mon_arg_list *args,
 uint32_t *metric_id);
int monp_cmd_subscribe_s(
 monp_conn *conn,
 uint32_t metric_id,
 uint32_t connection);

The query method is an optimization for fast information
retrieval. It is equivalent to a sequence of COLLECT and
GET commands followed by STOP one sent to Monitoring
system. Due to its nature it can only be used with
continuously measurable metrics. The COLLECT com-
mand instructs the monitoring system to create a metric
instance with the given parameters and the GET one to
send value of metric to the consummer preceding this by
new measurement in case of continuous metric. The sub-
scribe method instructs Monitoring system that values of
this metric shouldn’t be buffered but automatically sent to
the specified channel. Regardless of the metric type it is
needed to invoke the method:

int monp_metric_wait(
 monp_conn *conn,
 uint32_t metric_id,
 monp_metric_value **mv);

that waits until a value for the metric identified by metricid
arrives and returns it in structure representing a metric
value. At the end on its work and during the migration of
Slave process Master invokes the following method:

int monp_cmd_stop_s(
 monp_conn *conn,
 uint32_t metric_id,
 uint32_t connection);

to inform the monitoring system that it is no longer
interested in monitoring the given metric and no more
metric values for this identifier should be sent to the
specified channel. Detailed information concerning Moni-
toring System can be found in "Adaptive Grid Monitoring
Architecture Prototype" documentation [14].

3.3. Checkpointing and migration
 As it was mentioned before Master there are two
metrics being monitored by Master. One of them represents
current performance of Slave application on given
machine. While it drops below defined threshold Master
decides to move application to less loaded machine.
Service responsible for migration process is GRMS, it can
be invoked using following API call:

void migrateTask(
 JobIdentifier jobId,
 TaskIdentifier taskId,
 JobDescription jobDescription);

It is not mandatory to provide a new job description –
jobDescription argument is optional. It should be provided to
change the way the application will be executed after
migration. In the most simple use-case the Master could
add some executable arguments that are needed after
migration – for instance a parameter that indicates that
the migration took place. After receiving migration call
the GRMS is trying to checkpoint the Slave application.
There are two types of checkpointing available in the
Gridge environment: application and system level.
 In application level checkpointing application itself is
responsible for providing such capability. After receiving
the migrate call, the role of the GRMS is to checkpoint the
application, find new better resource, transfer all needed
data there and resubmit it. As it was already mentioned for
the simplest case GRMS just kills the application process
and assumes that checkpoint data were generated
periodically. If attribute checkpoint of tag task is set to ’true’
in job description, the GRMS is trying to use one of
checkpointing interfaces, either web service interface of
application or appropriate interface of Mercury. While
Slave receives checkpoint call it can perform any required
actions including registering additional output data and
checkpoint files, and finally terminates.
 For system level checkpointing GRMS is using
the Checkpointing Service that exploits libraries developed
for some operating systems as described in section 2.8

3.4. Application termination
 All the time, Master application is aware of state of
Slave, thanks to notifications sent by GRMS. So it can
suspend metrics monitoring during migration and resumes
it as soon as application is active again. I was not described
so far how the second registered metrics is used. The pur-
pose of it, is to trigger a spawning a new job by the Master.
Based on internal algorithms the Master is able to decide
that it is required to run new instance of application, doing
some independent computation, to increase overall per-
formance. To do so the Master constructs new job descrip-
tion and submits it to GRMS:

JobIdentifier submitJob(
 JobDescription jobDesc);

Job description can contain one or more tasks describing
Slave application, and treated similar way as introduced for
Slave so far.
 The last step of the scenario is connected with termina-
tion of the applications. Before the Slave finishes execu-
tion, it has to unregister metrics and checkpoint control
from Monitoring using following methods:

J. Pukacki et al. 64

void prod_app_unregister_metric(
 const char *name);
void prod_app_unregister_ctrl(
 const char *name);

The only parameter of both methods is the name of the
metric or control to be unregistered.
 Then, it can also register with GRMS any additional
output generated that was not defined in job description or
wasn’t registered so far.
 When the Slave terminates, GRMS takes care about
transferring output data to specified locations and clearing
application’s workspace. Master can finish its execution
when there is no Slave application running. But before
exiting it can do some cleaning: unregister notifications
about Slave status changes from GRMS:

void unregisterTaskNotification(
 JobIdentifier jobId,
 TaskIdentifier taskId,
 NotificationId notificationId);

and from Mobile Services (namely from Notification
service):

void unregisterNotification(
 Notification notification);

Notification type contains information needed for proper
identifying the notification to be unregistered from Noti-
fication service.
 If one of the slave results are visualizations the
application can enable this output for mobile device users.
To do this slave would call the Message Box service from
Gridge Mobile Services. Calls to do are:

Message createMessage(
 User user,
 Folder folder,
 String messageTitle,
 String messageText,
 MessageAddressData messageTo,
 MessageAddressData messageFrom,
 MessageAddressData messageCC,
 MessageAddressData messageBCC,
 int iFlag,
 Calendar timestamp);

int saveMessage(User user, Message message)

User type contains information needed for proper identify-
ing the message box user to create the message for. Folder
type contains information needed for proper identifying the
message box folder to create the message in. Message-
AddressData type contains information needed for proper
setting the message address fields. Since this moment the
user can read the message with Gridge Mobile Client and if

the message contains any link pointing to displayable
visualization, the user can view this visualization prepared
by Visualization Service for Mobiles exactly for the user
device capabilities.

4. BEHIND THE SCENES
 – SERVICES INTERACTIONS

 Presented in section 3 scenario was focused on describ-
ing interaction between application and Gridge services.
There is a lot of activity taking place among services itself,
as a reaction on application calls. First of all, GAS is
heavily used as a central point for authorization decision.
So when any remote interface of the service is invoked, it
checks in GAS if given user is authorized to call that
method of the service. To realize job submission call,
GRMS calls Information Service (for instance Globus
MDS) to search for potential resources to use. Information
Service can obtain dynamic part of machine parameters
from Mercury Monitoring. After choosing a machine,
GRMS uses remote interface of Globus for job submission.
Before application actually starts, Virtual User Account
System is used for mapping Grid user to local account on
given host. In case the job is started from Mobile device
with Gridge Mobile Client as the first step the client sends
request to login to Mobile Command Center gateway,
which forwards this request to GridSphere login service.
Depending on the login result, the user can or cannot
proceed to GRMS job submission part of mobile client.
Assuming the user is logged in, he/she can submit the job
using submit command, which is forwarded from gateway
to GRMS service. User credentials needed for job sub-
mission are obtained by gateway from Gridsphere services.
To register for user notification the application calls GRMS
service and Notifications Service. When the specified event
occurs GRMS is calling the Notification Service to notify
the application owner, or group of users with e-mail, SMS
or internet communicators messages. If the message should
be sent as instant internet communicator message it is
forwarded to Messenger Service, which actually establishes
a conference between all interested users. All notification
messages are stored in Message Box for further retrieval
via Gridge Mobile Client – so the Email or SMS message,
which was send to the user can be simultaneously viewed
from mobile device.
 After the application terminates GRMS transfers to the
output the generated data. It calls Data Management
System to provide physical location for given logical file
identifier, and then launches the data transfer from working
directory of application to some data storage system. If one
of the Slave’s application results are visualizations, the ap-
plication can enable this output for mobile device users. To
do this, the application calls the Message Box service.
Since that moment the user can read the message with
Gridge Mobile Client and if the message contains any link

Programming Grid Applications with Gridge 65

pointing to displayable visualization, the user can view this
visualization prepared by Visualization Service for Mobiles
(VSfM) exactly for the user device capabilities.

5. CONCLUSIONS

 In this paper we have presented the Grid Toolkit called
Gridge, developed by Poznań Supercomputing and
Networking Center. The way applications can use Gridge is
presented using a simple, yet advanced task farming
scenario. Gridge can be used as a whole, including all the
services and tools, or a user may choose just these services
and tools that are important for specific scenario. Gridge
provides a flexible, secure and robust Grid infrastructure. It
is currently being used in many Grid infrastructures,
including Clusterix (http://www.clusterix.pcz.pl), VLab
(http://vlab.psnc.pl), InteliGrid (http://www.inteligrid.com),
ACGT (http://acgt.ercim.org) and others.

References
 [1] GRMS Admin’s Guide,
 http://gridlab.org/Resources/Deliverables/D9.6.Admins_Guide.pdf
 [2] GRMS User’s Guide,

http://gridlab.org/Resources/Deliverables/D9.6.Users_Guide.pdf
 [3] Mobile Client User’s Guide,

http://gridlab.org/Resources/Deliverables/D12.5.userguide.pdf
 [4] Adaptive GRID Monitoring Architecture Prototype,

http://www.gridlab.org/Resources/Deliverables/D11.6.pdf

 [5] M. Jankowski, P. Wolniewicz and N. Meyer, Virtual User
System for Globus based grids, Cracow ’04 Grid Workshop
Proceedings, December 2004.

 [6] GridSphere Project, http://www.gridsphere.org/
 [7] GridLab: A Grid Application Toolkit and Testbed,

http://www.gridlab.org/
 [8] Java Community Process: JSR 168 Portlet Specification.

Project Website. Dec 1, 2004.
http://www.jcp.org/jsr/detail/168.jsp

 [9] J. Novotny, M. Russell and O. Wehrens, GridSphere: An
Advanced Portal Framework, EUROMICRO, 2004.

 [10] M. Russell, J. Russell and O. Wehrens, The Grid Portlets
Web Application: A Grid Portal Framework, PPAM, 2005.

 [11] M. Bogdanski, M. Kosiedowski, C. Mazurek and M.
Stroinski, Facilitating the Process of Enabling Applications
within Grid Portals. Lecture Notes in Computer Science
3251: Grid and Cooperative Computing GCC 2004. Sprin-
ger-Verlag. Berlin Heidelberg New York (2004) 175-182

 [12] M. Bogdanski, M. Kosiedowski, C. Mazurek and
M. Wolniewicz, GRID SERVICE PROVIDER: How to
improve flexibility of Grid user interfaces, Lecture Notes in
Computer Science 2657: Proceedings of the International
Conference on Computing Science ICCS 2003, Springer-
Verlag. Berlin Heidelberg New York 255-263 (2003).

 [13] P. Grzybowski, M. Kosiedowski and C. Mazurek, Web
Services Communication within the PROGRESS Grid-
Portal Environment, Proceedings of the International
Conference on Web Services ICWS 2003. Las Vegas USA
(2003) 340-345

 [14] M. Kosiedowski, M. Malecki, C. Mazurek, P. Spychala,
and M. Wolski, Integration of the Biological Databases
into Grid-Portal Environments, Workshop on Database
Issues in Bioological Databases DBiBD. Edinburgh UK
(2005), accessed from http://progress.psnc.pl/

JULIUSZ PUKACKI received his M.Sc. degree in computer science from Poznań University of Technology
(Parallel and Distributed Computating). Since 1998 he is working in Poznań Supercomputing and Networking
Center. At first he was employed in Network Services Department as a programmer of inetrnet and intranet
services. Next he changed department to Application Department and started to work in the Grid computing
area. Currently in Jarek Nabrzyski team he works on solutions for resource management in the Grid
environment. Pukacki has been involved in a number of Grid projects. One of the most important was
GridLab Project where he was a leader of work package responsible for resource management.He is still
leading a development of GRMS (Grid Resource Management System) – metascheduler for Grid environ-
ments. Other projects are ACGT, Inteligrid, HPC-Europa, and national ones: Progress (project done in
cooperation with Sun Microsystems), SGI Grid, and Clusterix. In all those project he is working on delivering
resource management solutions for Grids.

MICHAŁ KOSIEDOWSKI, has been with the Poznań Supercomputing and Networking Center since 1997. He
received his master’s degree from the Poznań University of Technology in 1998. He has been involved in
research and developments concerning web and portal solutions. Some of the major projects he participated in
include the Multimedia City Guide and Polish Educational Portal. Since 2002 Michal has been involved in the
design and development of solutions for construction of access environments to Grid resources and services.
He is author and co-author of about 10 publications concerning Grid access and Grid portals in professional
journals and major conferences.

J. Pukacki et al. 66

RAFAŁ MIKOŁAJCZAK, M.Sc. [e-mail: Rafal.Mikolajczak@man.poznan.pl]. M.Sc. degree in Computer
Science from the Poznań University of Technology in 1998. Currently he is employed as a HPC specialist
position at the Supercomputing Department in Poznań Supercomputing and Networking Center. His research
interests concern checkpoint low level services and Grid service and distributed data management. Hi is also
responsible for the storage system in PSNC. He took part in the preparations of the distributed storage
management project proposals (National Data Store, successfully accepted by the Polish Government). During
the last three years his R&D activity concerns the checkpointing and migration issues in HPC/HTC
computing. He is coauthor of “Resources virtualization in fault-tolerance and migration issues” paper that will
be published in ICCS204 proceedings. In years 2001-2003 he gains the experience in checkpointing area
issues by participating in implementation user- and kernel-level checkpointing mechanism for the Solaris OS
on Sparc CPU. This work was done within the PROGRESS project (http://progress.psnc.pl). Currently he is
working on kernel-level checkpointing mechanism for IA64 with Linux OS. This effort is being done within
the SGIGrid project (http://www.wcss.wroc.pl/pb/sgigrid/en/index.php).

MARCIN ADAMSKI obtained an M.Sc. in Computer Science in 1996 with the Intelligent Decision Support
Systems Department at the Poznań University of Technology (PUT). After obtaining his M.Sc. he began
working for PUT, developing GUI clients to network analyzers for Siemens A.G. and Tektronix, Inc. He
turned to Grid computing in 2002 when he joined the GridLab Project, helping to design and develop the
Gridge Authorization Service (GAS). Now, as project lead for GAS, he is actively developing and overseeing
its use in the InteliGrid Project. His current research activities are focused primarily on authentication and
authorization processes in Grids and in Virtual Organizations.

PIOTR GRABOWSKI obtained an M.Sc. in Computer Science in 1998 at Poznań University of Technology –
Distributed Computer Systems department. After his M.Sc., he joined the programmers group at PUT and
worked on mobile network protocol analyzers software for Siemens A.G. and Tektronix, Inc. In 2002 he
joined GridLab project “Access for Mobile Users” workpackage. The main thrust of his current research work
are Mobile Devices, Web Services and Web technology. Piotr is working for Gridge on enabling access from
Mobile Devices to the Grid.

MICHAL JANKOWSKI, received his M.Sc. in computer science in 1998 from Poznań University of Technology
(Parallel and Distributed Computating). 1998-2003 he worked in Poznań University of Technology on mobile
network protocol analyzers software for Tektronix, Inc. Since 2003 he has been working in Poznań
Supercomputing And Networking Center, Supercomputing Department and he has participated in a number of
Grid projects: SGIgrid, Clusterix, Coregrid, BalticGrid. His special research interests are user management
and accounting in Grids. He is an author or co-author of several papers in professional journals and conference
proceedings.

MIROSLAW KUPCZYK (MK) received M.Sc. degree in Computer Science from the Poznań University of
Technology (1999), Distributed Computer Systems specialization. Currently he is employed as a HPC
Specialist at the Supercomputing Department in Poznań Supercomputing and Networking Center (PSNC). His
research interests concern graph algorithms, grid user working environment, resource management in the grid
technology and administration, configuration of HPC systems. Since 1998 MK has been responsible for
putting into practice load sharing facilities (Platform Comp. LSF) on SGI and Cray machines. He has been
involved in several grid projects (CrossGrid, EGEE, BalticGrid, SGIgrid with co-operation with Silicon
Graphics, Polish National project PROGRESS, etc). He is an author and co-author of several reports and
papers in scientific journals and conference proceedings.

Programming Grid Applications with Gridge 67

CEZARY MAZUREK, Ph.D., Head of the Network Services Department at Poznań Supercomputing and
Networking Center. He received his PhD degree in Computer Science from Poznań University of Technology
in 2004. His research interests concern a wide variety of advanced network services including portal solutions,
digital multimedia libraries, streaming technologies, distance learning and access to grid services. He has been
the manager of numerous projects in those fields coordinated by PSNC. Some of the major ones include the
Multimedia City Guide, Polish Educational Portal, Digital Library Framework: dLibra, Computer recruitment
to schools 2003-2005. In 2001-2004 he was leading the PROGRESS project titled “Creating an access
environment for GRID computational services performed by cluster of SUNs”, co-funded by the State
Committee for Scientific Research and SUN Microsystems. Since 2003 he is the leader of Interactive TV
project co-funded by the State Committee for Scientific Research and Polish National Public Television. He is
an author or co-author of over 50 papers in professional journals and conference proceedings.

DR NORBERT MEYER is currently the Head of the Supercomputing Department in Poznań Supercomputing and
Networking Center. His research interests concern resource management in the GRID environment, GRID
accounting, data and storage management, technology of development graphical user interfaces and network
security, mainly in the aspects of connecting independent, geographically distant Grid domains. He conceived the
idea of connecting Polish supercomputing centres, the vision of dedicated application servers and distributed
storage infrastructure. Norbert Meyer is co-author of the CERT Pionier organization (http://cert.pol34.pl). Leader
of international and national project activities and member of Steering Groups, e.g. EU CoreGRID
(www.coregrid.net), BalticGrid (www.balticgrid.org), CrossGrid (www.eu-crossgrid.org). He participated in
several national projects concerning the HPC technology, e.g. being co-author of the projects entitled Creating an
access environment for computational services performed by cluster of SUNs, VLAB – High Performance
Computing and Visualisation for Virtual Laboratory Applications, Clusterix – National CLUSTER of LInuX
Systems project. An example of a production Grid is a project proposal done in co-operation with IBM, which
concerns the deployment of utility computing in Poland. He is also author and co-author of several reports and
papers (60+) in conference proceedings, member of conference Programme Committees. He is also a member of
eIRG (eInfrastructure Reflection Group) which is a group of experts related to European research infrastructure.

DR JAREK NABRZYSKI received his M.Sc. and Ph.D. degrees in computer science from Poznań University of
Technology in POLAND. Currently he is a researcher at the Poznań Supercomputing and Networking Center
(PSNC), where he heads the Applications Department. His research interests over the last 10 years have
focused on knowledge-based multiobjective project scheduling, and resource management for parallel and
distributed computing. For the last couple of years he has been working on tools and middleware technologies
for computational grids. Jarek Nabrzyski is a co-founder of the European Grid Forum and the Global Grid
Forum. In 2001-2002 he was a member of the Global Grid Forum Steering Group where he was the Area
Director of the Applications, Programming Models and Environments Area. In 2002-2005 he managed the
European GridLab project, in which he was one of the Principal Investigators, responsible for such areas as
Resource Management, Security and Mobile User Support. He is also involved in a number of 6FP projects,
including e.g. ACGT, InteliGrid, GridCoord, BREIN, QosCosGrid, Challengers, BeInGrid, OMII-Europe.
Jarek Nabrzyski is a member of several advisory boards, including projects such as Akogrimo, CoreGrid and
UCoMs (USA). He is also a member of the KISTI Supercomputing Center Advisory Board (Korea).

TOMASZ PIONTEK received his M.Sc. in computer science in 1998 from Poznań University of Technology
(Parallel and Distributed Computating). 1998-2002 he worked at Poznań University of Technology and
participated in Tektronix Project. Since 2002 he has been working in Poznań Supercomputing And
Networking Center, Application Department as Research Programmer in various Grid projects: GridLab,
HPC-Europa, ACGT. His research interests include distributed computing and resource management. Tomasz
belongs to GRMS team and works on solutions for resource management in the Grid environment.

MICHAEL RUSSELL began working under the direction of Ian Foster at the University of Chicago in May 2000
where he lead development of the Astrophysics Simulation Collaboratory Portal and helped to disseminate
information about the Globus Project. In May 2002 he moved to Berlin, Germany to manage the Grid Portals
Work Package of the GridLab Project at the Max Planck Institute for Gravitational Physics (Albert Einstein
Institute). While working on the GridLab Project, he and his colleagues created the GridSphere Portal
Framework. Now, as group leader of the GridSphere development team at the Poznań Supercomputing and
Networking Center (PSNC), he is helping to deliver Grid portal solutions for the Open Middleware
Infrastructure Institute for Europe, HPC Europa and several other projects in Europe.

J. Pukacki et al. 68

MACIEJ STROIŃSKI received the Ph. D. degree in Computer Science from the Technical University of Gdańsk
in 1987. Currently he is Technical Director of the Poznań Supercomputing and Networking Center. He is also
lecturer in the Institute of Computing Science of the Poznań University of Technology. His research interests
concern computer network protocols and management. He is author or co-author of over 100 papers in major
professional journals and conference proceedings.

MARCIN WOLSKI started working at PSNC in 2001 as a database and network programmer. In January 2002,
he joined the Data Management System (DMS) team, where he worked as a system analyst and developer. In
2003, he began to lead the DMS and modified its development direction towards grid environments and large-
scale solutions. He was also responsible for putting into practice the Data Management System software in the
scope of SGI project. In 2005, he was in charge of developing GIS applications and services for the PIONIER
network. These works were presented during Terena Networking Conference 2005 as a part of 40 Gbps pilot
network. Before turning to grid solutions, Marcin Wolski had worked on traditional GUI applications,
database middleware and Web-based applications. Additionally, he possesses a thorough experience in
database technologies, approved by participating in Oracle trainings and official conferences. His personal
interests concern system oriented architectures, autonomic computing and enterprise application frameworks.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 47-68 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

