
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 7-20 (2006)

SAGA: A Simple API for Grid Applications.
High-level application programming on the Grid

Tom Goodale1, 2, Shantenu Jha3, Hartmut Kaiser2, Thilo Kielmann4, Pascal Kleijer5,
Gregor von Laszewski6, Craig Lee7, Andre Merzky 4, Hrabri Rajic8, John Shalf 9

1Cardiff University, Cardiff, UK
 2Louisiana State University, Baton Rouge, USA

 3University College, London, UK
 4Vrije Universiteit, Amsterdam, The Netherlands

 5NEC, HPC Marketing Promotion Division, Japan
 6Argonne National Laboratory, Chicago, USA

 7The Aerospace Corporation, USA
 8Intel Americas Inc., USA

 9Lawrence Berkeley National Laboratory, Berkeley, USA

http://wiki.cct.lsu.edu/saga/

Abstract: Grid technology has matured considerably over the past few years. Progress in both implementation and standardization is
reaching a level of robustness that enables production quality deployments of grid services in the academic research community with
heightened interest and early adoption in the industrial community. Despite this progress, grid applications are far from ubiquitous, and
new applications require an enormous amount of programming effort just to see first light. A key impediment to accelerated deployment
of grid applications is the scarcity of high-level application programming abstractions that bridge the gap between existing grid middle-
ware and application-level needs. The Simple API for Grid Applications (SAGA [1]) is a GGF standardization effort that addresses this
particular gap by providing a simple, stable, and uniform programming interface that integrates the most common grid programming
abstractions. These most common abstractions were identified through the analysis of several existing and emerging Grid applications.
In this article, we present the SAGA effort, describe its relationship to other Grid API efforts within the GGF community, and introduce
the first draft of the API using some application programming examples.
Key words: Grid Programming, API, GGF, Grid Applications, SAGA

1. INTRODUCTION
 Many application developers wish to make use of the
exciting possibilities opened up by the advent of the Grid.
Grid APIs have traditionally been developed using a bot-
tom-up approach that exposes the broadest possible func-
tionality, but requires extremely verbose code to implement
even the simplest of capabilities. Applications developers,
however, are typically focused on the high-level capabili-
ties to be delivered by their end-user applications, and are
daunted by the complexity of the vast array of Grid tech-
nologies and APIs that currently exist.
 SAGA complements these existing Grid technologies
by applying an application-oriented, top-down approach to
programming interfaces that presents the developer with
the higher-level programming paradigms and interfaces
that they are used to. Such high-level interfaces provide
a more concise syntax for expressing the goals that applica-
tion programmers typically have in mind such as moving
a file from point “A” to point “B”, or POSIX-like I/O on
remote files. They are also intended to cover the most
common Grid programming operations, such as file trans-
fer, job management, and security.

For example, the complete process of copying of a remote
file may involve interaction with a replica location service,
a data transport service, a resource management service,
and a security service. It may involve communication via
LDAP/LDIF, GRAM, HTTP, and GSI, as protocols or
protocol extensions. All a C or Fortran application pro-
grammer wants to see, however, is a call very much like:

call fileCopy (source, destination)

 Although the file copy example above is simplified, it
illustrates the central motivation for our work. SAGA fa-
cilitates rapid prototyping of new Grid applications by
allowing developers a means to concisely state very com-
plex goals using a minimum amount of code. As such,
SAGA frees developers to focus their effort on components
that require more sophistication than a simple API allows
rather than attempting to assimilate the full depth and com-
plexity of low-level Grid interfaces all at once. Over time,
developers can tune their applications by incrementally
replacing the SAGA interfaces by programming directly to
the underlying Grid interfaces.

user
Tekst maszynowy
CMST 12(1) 7-20 (2006)

user
Tekst maszynowy
DOI:10.12921/cmst.2006.12.01.07-20

user
Tekst maszynowy

user
Tekst maszynowy

T. Goodale et al. 8

 It seems obvious, that a complete coverage of all the
capabilities offered by a complex Grid environment cannot
possibly be delivered by a deliberately simple API. Indeed,
the single main governing design principle for the SAGA
API is the 80:20-Rule: “Design an API with 20% effort,
and serve 80% of the application use cases”. So, the SAGA
effort intentionally does not try to cover all use cases, but
only those which are most useful to a large portion of ap-
plication use cases.
 Many projects, such as GridLab [2] with its Grid Appli-
cation Toolkit [3] (GAT), the Commodity Grid project
(CoG) [4], and RealityGrid [5] recognized the need for
higher-level programming abstractions and have sought to
simplify the use of the Grid for application developers.
Simultaneously, many application groups in fields ranging
from particle physics to computational biology, have de-
veloped their own APIs to simplify access to the Grid for
their application such as the Particle Physics Data Grid [6]
and the Illinois BioGrid [7]. This momentum has culmi-
nated in the formation of the Simple API for Grid Applica-
tions Research Group (SAGA-RG) within the Global Grid
Forum (GGF).
 SAGA was founded at GGF11 in Hawaii, after success-
ful BoFs at GGF10 and GGF9 and originally chaired by
members of the GridLab, Globus/Python-CoG, and Reali-
tyGrid project. The aim of the group has been to identify
a set of basic Grid operations and derive a simple, consis-
tent API, which eases the development of applications that
make use of Grid technologies. The implementation of the
SAGA API has been guided by examination of the re-
quirements expressed by existing and emerging Grid appli-
cations in order to find common themes and motifs that can
be reused across more than one use-case. The broad array
of use cases that have been collected from the nascent Grid
application development community continues to play
a pivotal role in all design decisions.
 The next section describes the process which has been
used to derive the initial scope of the API in more detail,
and also documents general design principles applied to the
initial implementation. The SAGA API is then put in rela-
tion to other API related work in GGF, and also to projects
with similar scope, such as the GAT and Globus-CoG.
A more detailed description of the current version of the
SAGA API specification follows, including a number of
explicit code examples.

2. SAGA: GENERAL DESIGN

 The original SAGA Research Group charter outlined
a systematic approach to deriving the API: use case ana-
lysis, requirements analysis, and API development. API
development was further split into the creation of an ab-
stract, language independent, specification, and then a set
of language bindings covering the major languages used in

scientific application development – Fortran, C, C++, Java,
Perl and Python. At GGF12 in Brussels, it was suggested
that a design team should be formed to rapidly proceed
through the analysis process and produce a strawman API
that could be used for further discussion and refinement
into a final API. That SAGA Strawman API was supposed
to be iterated against the use case requirement analysis
which was to be produced in parallel, in order to stay true
to the process outlined in the charter1.

2.1. Use Case Analysis
 Upon creation, the SAGA group sent out a call for use
cases, which resulted in 24 responses. These came from
a wide range of applications areas, such as visualization,
climate simulations, generic Grid job submission, applica-
tion monitoring and others. A large set of use cases (9) was
submitted by the GridRPC Working Group, which targets
a similar set of application in GGF (see section 3.1).
 Common to the majority of the submitted use cases was
their explicit focus on scientific applications (not surpris-
ing, as almost all use cases came from the academic com-
munity). For a discussion of non-scientific applications as
SAGA customers, see subsection 2.3.
 The analysis of the SAGA use cases focused on the
identification of the SAGA API scope, on the level of ab-
straction needed and wanted by the application program-
mers, and on non-functional requirements to the API, such
as targeted programming languages, requirements to thread
safety etc. Additional similar requirements are also drawn
from other prominent projects (such as listed in section 4),
which all took active participation in that SAGA group
effort.

2.2. The Design Team and the SAGA Strawman API
 In response to the suggestions at GGF12, the SAGA
group sent out a call and formed a design team, which met
in December 2003 under the auspices of the Center for
Computation and Technology, at Louisiana State Univer-
sity, Baton Rouge, and at the Albert-Einstein-Institut,
Golm, Germany, with an AccessGrid link connecting the
two halves of the design team, and allowing occasional
outside participation. The major participants were Tom
Goodale, David Konerding, Shantenu Jha, Andre Merzky,
John Shalf, and Chris Smith, with Craig Lee, Gre-
gor von Laszewski, and Hrabri Rajic providing important
input. This was followed in January of 2004 by a meeting
held at the Lawrence Berkeley Lab in Berkeley, California,
USA, also with an AG-Link to the Vrije Universiteit, Am-
sterdam, Netherlands.
 Before embarking on developing the APIs, a few gen-
eral design issues were considered and agreed upon.

1 Currently, the SAGA group is undergoing a re-chartering process and
 transforms into a Working Group, and is here referred to as SAGA-WG.

SAGA: A Simple API for Grid Applications 9

 • The API would be developed and specified in an object-
oriented manner, using the Scientific Interface Descrip-
tion Language (SIDL) to provide a language-neutral
representation. The consensus was that it would be eas-
ier to provide a mapping from an object-oriented repre-
sentation into a procedural language such as Fortran or
C, than to provide a mapping from a procedural repre-
sentation into an object-oriented language such as C++
or Java.

 • Any asynchronicity would be handled by a polling
mechanism rather than a subscribe/listen mechanism.
This makes the implementation in non-multi-threaded
environments clearer, and avoids defining some mecha-
nism to represent closures in non object-oriented lan-
guages. While both these things are possible – co-
operative multi-tasking using a call to a routine giving
time to asynchronous tasks, and closures by use of
a data-pointer, function-pointer pair – they would pro-
vide greater divergence between the different imple-
mentation languages. The team did not rule out future
versions of the API from having such features2 .

 • Each Grid subsystem should be specified independently
from other subsystems, and should not make use of
them as far as possible. This allows the independent de-
velopment and implementation of parts of the API, at
the cost of a small extra amount of complexity when us-
ing data derived from one part of the API in another,
such as when opening a logical file for remote file ac-
cess, which requires the retrieval of the location of the
logical file from the replica catalog, using one system,
and the using the File APIs to open it. The team decided
that the extra complication did not outweigh the advan-
tages gained by the semantic simplicity of defining
things separately, and the ability to to implement each
subsystem independently of other subsystems. It is pos-
sible that future versions of the API may have bridging
calls to simplify some uses of the APIs, however these
would be built upon the underlying subsystems, thus
not breaking their independence.

 The design team examined the use cases and extracted
the key areas which were crucial to a number of the use
cases:
 • Sessions and Security. Security is essential for any Grid

applications that run across multiple administrative do-
mains or security boundaries. In SAGA, security is
managed with the notion of a session.

 • Data Management. This can take many forms but re-
mote file access is a common requirement for many
Grid applications. The team also tackled replica cata-
logs [8], as it was decided that the technology was suf-
ficiently mature and the interfaces were sufficiently
similar to files to make this reasonable.

2 But see notes to asynchronous notification below.

 • Job Management. The concept of remote job startup is
a very common requirement. Asynchronous operations
were also found to be an important paradigm for remote
Grid operations and, hence, are represented as tasks in
the initial SAGA Strawman API.

 • Inter-process Communication. SAGA supports inter-
process communication with a stream concept that is
similar to BSD sockets.

 These key areas are discussed in detail in Section 5.
 As the SAGA API requirement definition works are
performed in parallel to the SAGA Strawman API defini-
tion work (see below), the SAGA group faces the addi-
tional task to iterate the SAGA Strawman API against these
requirements. That process is currently underway, and
seems to yield promising results: those use cases already
evaluated seem to be easily implementable with the current
API definition, as long as the scope matches. However, that
scope match is definitely incomplete. In particular, several
use cases miss the ability of SAGA to provide asynchro-
nous notification. That feature is therefore planned to be
integrated into the API draft soon.

2.3. SAGA and Non-Scientific Applications
 As has been discussed in the previous subsection 2.1, it
is possible that the SAGA Strawman API reflects a per-
ceived bias towards scientific application. SAGA require-
ments, goals and design are use-case driven. Given that till
the time of writing of this report, the SAGA-WG had re-
ceived use cases from only the scientific community, it is
natural that SAGA does reflect this bias – it is not inten-
tional but an artifact of the set of use cases received. In-
deed, SAGA does not by definition constrain itself to scien-
tific applications only. It is undeniable that the need for
well-designed APIs goes well beyond scientific computing.
The recent, very popular phenomenon of Google mashing
is possible due to well designed and simple APIs that are
openly publicized by Google [9] – thus enabling mash-up
application developers to use Googles’ capabilities without
ever having to worry about the complex and in this case
proprietary underlying technology and implementation. In
many ways, this is precisely the philosophical aim of
a Simple API for Grid Applications. Admittedly, the API
for Google mash-ups isn’t strictly a Grid API, but the ar-
gument in favor of simple API for Grid applications is still
valid. What is, however, unclear at the time of writing is, if
the same “Simple” API will be equally effective in both
domains of scientific computation and commercial Grid
applications. As part of the exercise of determining that any
eventual Simple API is of use in both areas as well as the
initial first steps in this direction – direct and indirect – the
SAGA-WG has, i) asked other relevant groups at the GGF
for further “non-scientific computing” use-cases, and ii)
agreed to work more closely to ensure compatibility with
groups involved in developing relevant middleware, such

T. Goodale et al. 10

as OGSA [10]. As these middleware groups have in turn
received input from both communities, SAGA will hope-
fully benefit indirectly.

3. SAGA IN GGF

 SAGA has ties to a number of other groups in GGF. In
fact, a significant part of the SAGA input and motivation
originates in the work of other GGF groups. This sections
lists the most important of these groups, and shortly de-
scribes their relation to the SAGA-WG.

3.1. DRMAA-WG
 The DRMAA Working Group [11] at GGF produced
an API specification for the submission and control of jobs
to one or more Distributed Resource Management (DRM)
systems. The scope of this specification is all the high level
functionality which is necessary for an application to con-
sign a job to a DRM system, including common operations
on jobs like termination or suspension. The objective is to
facilitate the direct interfacing of applications to today’s
DRM systems by application’s builders, portal builders,
and Independent Software Vendors (ISVs) [12].
 DRMAA and SAGA groups have enjoyed several years
of active collaboration. While the motifs of the SAGA
people were not to reinvent the wheel (i.e. the DRMAA
API), the DRMAA people had an interest in independent
scrutiny of its API efforts, in particular for job submission
and job states. Both groups have a goal of a common base
API which provides an easy transition for application de-
velopers moving from DRM systems or traditional Com-
pute centers to the Grid systems or vice versa. DRMAA
has passed its work experience during the SAGA Strawman
API deliberations and has participated in many SAGA
group initiatives, while at the same time attracting SAGA
principals’ participation in its sessions. Currently, the job
submission part of the SAGA API draft reflects the
DRMAA API very closely.

3.2. GridRPC-WG
 The GridRPC API [13] represents ongoing work to
standardize and implement a portable and simple remote
procedure call (RPC) mechanism for Grid computing. This
standardization effort is being pursued through GridRPC
Working Group at GGF. The initial work in that group
showed that client access to existing Grid computing sys-
tems such as NetSolve [14], Ninf [15], and DIET [16], can
be unified via a common API, a task that has proven to be
problematic in the past. The group successfully created
such an API specification, which is now a GGF Draft Rec-
ommendation [17].
 The cooperation with the SAGA-WG allows the GridRPC-
-WG to broaden the target user community for GridRPC

significantly, and would also equip the GridRPC API with
a look & feelis compatible with the one used for other Grid
programming paradigms. For example, the model for asyn-
chronous calls used for RPCs will match the model for
asynchronous calls of other paradigms, e.g. remote file
access.

3.3. GridCPR-WG
 GGFs Grid Checkpoint and Recovery (GridCPR)
Working Group [18] is devising an architecture for check-
pointing long running applications for later recovery, pos-
sibly on different Grid resources. GridCPR use cases in-
clude fault resilience, intermittent operation (using small
time slices until final completion), as well as parameter
space exploration using various, related checkpoints.
 The currently envisioned architecture encompasses
services for authentication/authorization, job management,
checkpoint state management, checkpoint transfer, and event
handling. Applications are supposed to use a GridCPR
library, providing an API to these services. Details of this
API are currently under investigation. As several concepts
are similar to those defined by the SAGA API (copy/move
checkpoint files, read/write data, find files etc.), compati-
bility with SAGA is desired. That would provide applica-
tion programmers with a more complete and consistent
interface to the Grid related capabilities offered by the
APIs.

3.4. OGSA-WG
 The Open Grid Services Architecture (OGSA) Working
Group at GGF defines a Web Service based architecture
which eventually will be the overarching design principle
for all Grid services. The problem space targeted by
the OGSA group at first seems unrelated to the SAGA
effort but, in fact, represents the class of service-oriented,
middleware architectures that could be the target platform
for many SAGA implementations. Such service-oriented
architectures address many issues, such as resource nam-
ing, state management, and security, that will require a sim-
plified mapping into the SAGA API. Hence, the SAGA-
-WG is in active communication with the OGSA group and
other OGSA-related efforts to ensure the proper level of
compatibility by cross-reviewing their respective standard
documents and by providing SAGA reference implementa-
tions on OGSA-based middleware systems.

3.5. Other GGF Working Groups
 The Grid File Systems (GFS) Working Group [19]
targets the definition of a architecture which integrates
physical file systems into a single global, uniform name
space [20]. The SAGA-WG uses the definitions for name
spaces defined by the GFS-WG, and hence has the same
notion of files and directories as that group.

SAGA: A Simple API for Grid Applications 11

 The Byte-IO Working Group [21] defines an OGSA
compatible service which allows for efficient remote access
to binary data, e.g. files. Also, the GridFTP Working
Group [22] defined extensions to the standard FTP protocol
which allows for efficient memory-to-memory and disk-to-
disk data transfer in Grids. Both groups invest significant
time in exploring paradigms for efficient remote data ac-
cess. These paradigms are partially reflected by the SAGA
API.
 The JSDL Working Group [23] defines a XML based
Job Submission and Description Language. Although the
SAGA API currently refrains from any explicit usage of
XML, the keywords used for the SAGA job descriptions
reflect those defined by JSDL.
 The Persistent Archive (PA) Research Group [24], Data
Replication (REP) Research Group [8] and the OGSA
Replica Services (OREP) Working Group [25] have all
worked on the services that manage distributed data files
for data Grids. Their work [26] is reflected in the SAGA
Logical File API, which adopts the concept of logical files
(or ‘replicas’) that was defined by these groups.

4. RELATED WORK

 The work on the SAGA API is not an isolated effort,
but builds on top of a number of previous projects targeting
the same problem space. The Globus-CoG is probably the
most prominent representative of an API which tries to
specifically abstract the Globus package. The GAT from
the EU-GridLab project targets already a more general
abstraction of Grid paradigms, and follows similar design
principles as SAGA. Other projects such as RealityGrid
and DataGrid/EGEE/LHC target the same problem space,
but with interfaces with stronger focus on specific commu-
nity needs. This section describes these efforts and their
influence on SAGA in some detail. In general, the SAGA-
WG can be seen as the “Grand Unification” of all these
Grid APIs, which provides a more uniform, middleware
independent and standardized solution for Grid application
programmers.

4.1. GAT
 The design of the Strawman API and the ongoing work
on a SAGA engine implementing this Strawman API is
very much influenced by the experiences collected with the
Grid Application Toolkit (GAT [3]).
 Figure 1 shows the GAT architecture. It mainly distin-
guishes between user space and capability space. In user
space runs the application code that has been programmed
using the GAT API. The GAT engine is a lightweight layer
that dispatches GAT API calls to service invocations via
GAT adaptors. Adaptors are specific to given services and
hide all service-specific details from the GAT. A GAT

engine typically loads adaptors dynamically at runtime,
whenever a certain service is needed. The GAT functional-
ity is grouped into various, so-called subsystems such as
 • The GAT Base Subsystem which defines general ob-
jects and methods, supporting interaction with the GAT
engine.
 • The Data Management Subsystem which covers three
areas: interprocess communication, remote file access, and
file management.
 • The Resource Management Subsystem which deals
with Grid (compute) resources. It provides functions for
both resource discovery and job management.
 • The Event and Monitoring Subsystem which allows
applications to send and receive events, such as events
generated by a Grid monitoring service.
 • The Information Management Subsystem which
connects to a generic Grid information system.
 • The Utility Subsystem which contains a number of
classes providing general, convenience, and/or utility-ori-
ented methods.
 An engine may load multiple adaptors implementing
the same subsystem at the same time. For example, one
adaptor can give access to a local file system while another
one gives access to files via GridFTP [22], and a third one
is using a replica catalog [27].
 While application and GAT together run in user space,
the services are executed in the capability space, which can
be distributed across the machines of a Virtual Organiza-
tion (VO [28]), including the one running the application.
The capability space consists of the resources themselves,
and the middleware providing services to access them.
 The GAT API has been designed using an object-based
approach, trying to avoid dependencies on any specific

Fig. 1. The GAT framework software architecture

T. Goodale et al. 12

language binding [29]. However, for each supported appli-
cation programming language, a complete GAT layer has
been provided, consisting of API, engine, and adaptors.
Currently the GAT supports C, C++, Python and Java as
target languages, where the C, C++ and Python implemen-
tations share the same engine and the same set of adaptors
(regardless of the language these are written in).
 The experience with the GAT showed, that the imple-
mented API was partly too terse and too much oriented to
synchronous operation. The SAGA Strawman API tries to
overcome this limitation by defining a more complete set
of functions dealing with different aspects of Grid related
interfaces, such as fuller namespace support for file sys-
tems and by defining a dual interface to all of the provided
functionality, synchronously and asynchronously.

4.2. Commodity Grids (CoG) Kits
 The Java CoG Kit [30] has over the years provided
successfully access to Grid services through the Java
framework. Components providing client and limited
server side capabilities are available. A subset of the Java
CoG Kit is distributed with the Globus Toolkit versions
3.0.2, 3.2, 3.9 and 4.0 as they use it. The Java CoG Kit
significantly enhances the capabilities of the Globus Tool-
kit by introducing Grid workflows, control flows, and
a task based programming model. A testing framework is
available to conduct client side functionality tests. Portals
and Swing components are under development [4]. A Py-
thon version of the CoG [31] does also exist, and has
a significant user base.
 The CoG kits have a very similar target user group as
SAGA. Also, as the CoG kits are around and used since
a number of years by now, the accumulated feedback and
experience gathered by the projects is very valuable to the
SAGA group. The group tries to include as much of that
knowledge as possible into its API design.

4.3. RealityGrid
 RealityGrid is a UK e-Science pilot project that has
used Grid-based computational steering for a wide range of
scientific applications. Computational steering as used by
RealityGrid is defined as any mechanism that enables
the control of the evolution of a computation, based upon
the real time analysis and visualization of the status of
a simulation, as opposed to the post facto analysis and
visualization of the output of a computation. The function-
ality referred to as computational steering enables the user
to influence the otherwise sequential simulation and analy-
sis phases by merging and interspacing them. The innova-
tive use of computational steering and interactive simula-
tions on a Grid of high-end resources has shown to be ef-
fective in solving scientific problems [32, 33], which proba-
bly couldn’t be otherwise. The use of Grid-based computa-

tional steering for scientific problems has amongst things
raised a need for user-level control and thus APIs related to
advanced reservations, co-allocation of resources and the
interaction of Grid-middleware with optical control-planes.
Providing for all of these needs is well outside of the scope
of initial efforts of SAGA Strawman API, but a SAGA
style look-and-feel API which does address these require-
ments will eventually be required by the scientific Grid-
-computational scientist.

4.4. gLite and others
 A number of more domain-specific interfaces exist
which try to shield application developers from the com-
plexities and dynamic behavior of Grid middleware in that
domain. Notably amongst these interfaces is gLite’s ‘Grid
Access Service’ (GAS) [34]. Similar to SAGA, the GAS
defines a Service which provides a simplified, stable and
abstract interface to the complete gLite middleware infra-
structure. Despite its differing architectural approach, the
goals and scope of the GAS is very similar to the SAGA
effort, and are considered as valuable input to the SAGA
design.

5. SAGA DETAILS

 As of October 2005, the SAGA API specification is
converging toward a coherent document. The intended
scope seems well covered, and the use cases which have
been motivating that scope seem to be well implementable
with the current API version. SAGA endeavors to provide
the Grid applications programmer with a common look &
feelall functional areas. Any potential future extensions of
the SAGA API will inherit the same look & feel so, form
an integral and easy to learn new parts of the API.
 This section describes the API in its current state in
some detail, and shows examples of its usage. However,
this description and the examples are not meant to be nor-
mative, and will with some certainty differ in many details
from the final SAGA API specification, which is expected
in 2006.

5.1. Session handling and security
 An essential part of the SAGA programming model is
formed by the API’s session management and security
handling. In order to keep the API usage simple and trans-
parent to the application, however, any session and security
handling is optional. A default session handle is used if no
explicit handle is specified, and a SAGA implementation is
required to initialize available default security tokens as
available, e.g., the default Globus certificate is to be used if
it is found in its standard location.
 However, if required, an application can create multiple
independent session handles. To each of these sessions,

SAGA: A Simple API for Grid Applications 13

explicit security tokens (called context in SAGA) can be
attached. Any SAGA object creation and method invocation

Fig. 2. Code Example: session and Security Handling in SAGA

can then be associated with that session handle, and is
required to use the specified security tokens. The code
example in Fig. 2 shows how to access a remote file using
a myproxy login.

5.2. Data management
 Remote data access and management certainly belong
to the most understood and most widely used paradigms in
distributed environments. Grids however apply subtle
changes to the well known remote paradigms, which need
to be reflected in the SAGA API. The data management
parts of the API are hence a blend of well known para-
digms (such as POSIX like directory navigation) and new
Grid paradigms (such as replica management).
1. Namespaces: Many data oriented services offer hierar-
chical categorization for the respective data entities, and
support the notion of containers or directories. That para-
digm is e.g. used for file systems, replica catalogs, Grid
information systems etc. Also, URIs as the mostly used
mechanism for resource addressing can be mapped to hier-
archical name spaces. In order to provide a uniform repre-
sentation of these various name spaces, the SAGA API
includes an abstract interface for (NameSpace), which is to

be implemented by the various data management subsys-
tems (e.g. for files and logical files). That name space inter-
face covers the management of the respective data elements
as entities, and provides methods to navigate in the name
space, to create, copy, move and delete elements in the
name space, and to query the elements for information
(such as name and type). The code example in Fig. 3 shows

Fig. 3. Code Example: create a remote directory

how to use that interface to create a directory on a remote
ftp server.

2. Physical files and directories: The SAGA API defines
the management of physical files in the paradigm of name

 #include <iostream>
 #include <string>

 #include <saga.h>

 void sample_fileread ()
 {
 try
 {
 // open the remote file
 saga::file f
 ("gsiftp://ftp.host.net/pub/INDEX");

 // read as long as there are data to read
 std::string s = f.read (100);
 while (!s.empty())
 {
 std::cout << s;
 s = f.read (100);
 }
 }
 catch (saga::exception e)
 {
 std::cerr << e.get_message() << std::endl;
 }
 }

Fig. 4. Code Example: read a remote file and copy to stdout

 #include <iostream>
 #include <saga.h>

 void sample_session ()
 {
 try
 {
 // create a SAGA session handle
 saga::session s;

 // create a myproxy context ...
 saga::context c (saga::context::MyProxy);

 // ... and fill it
 c.set_attribute ("username", "andre");
 c.set_attribute ("password", "secret");

 // attach the context to the session
 s.add_context (c);

 // create a file in that session
 saga::file f (session,

 "gsiftp://ftp.host.net/pub/INDEX");

 // further code see later file examples
 }
 catch (saga::exception e)
 {
 std::cerr << e.get_message () << std::endl;
 }
 }

 #include <iostream>
 #include <saga.h>

 void sample_mkdir ()
 {
 try
 {
 // open a remote directory
 saga::directory d
 ("gsiftp://ftp.host.net/pub/");

 // create a new subdirectory
 d.mkdir ("data/");
 }
 catch (saga::exception e)
 {
 std::cerr << e.get_message() << std::endl;
 }
 }

T. Goodale et al. 14

spaces as described above. Hence, the SAGA representa-
tions for remote files and directories allow to navigate
remote file systems, and to manage the remote file system
entities, i.e. files and directories. Additionally to the name
space interface, the SAGA file object allows to access the
content of the remote files, as it provides read, write and
seek methods. The example in Fig. 4 illustrates the usage of
a remote file read.
 If performance is an issue for the application, remote
file access can become a tricky business. Various mecha-
nisms are known in the distributed computing community
to handle that issue, however, there is currently no single
known solution for all potential file access patterns. The
SAGA API hence includes three different paradigms to
allow the implementation of various performance mecha-
nisms. These paradigms differ in their respective semantic
and syntactic level of abstraction. For details, see the “File”
section of the SAGA API specification [35].
3. Logical Files and Replica Catalogs: Adata management
paradigm newly introduced in Grids is that of file replica
management. Logical filenames are used to identify a file –
that file however can have multiple identical instances
distributed over the Grid (replicas). A Replica Catalog is
keeping track of these instances, and maps the logical file
name to physical file names if required.

 #include <iostream>
 #include <saga.h>

 void sample_filereplication ()
 {
 try {
 saga::logical_file lf
 ("rls://rls.host.edu/data/test");

 lf.replicate ("https://localhost/tmp/test");
 }
 catch (saga::exception e)
 {
 std::cerr << e.get_message () << std::endl;
 }
 }

Fig. 5. Code Example: replicate a logical file to localhost

 The SAGA API provides access to that paradigm. In
SAGA, the logical file names form again a name space as
described above. The logical_file object offers addi-
tional methods to manipulate the set of instances associated
with that logical file name: add_location, remove_location,
list_locations and replicate. The last method triggers a copy
of any instance of the logical file to a new location, while
adding that new location to the list of associated instances.
That method is shown in the code example in Fig. 5.

5.3. Job and task management
 Remote job execution and management naturally plays
a very important role in Grids – as Grids are designed to

simplify the virtualization and utilization of remote re-
sources, remote job management is probably the prime
usage area at the current stage. The SAGA API tries to
greatly simplify the standard paradigms in that area: simple
job submission, and retrieval of the jobs output data.
 As all distributed systems, Grids suffer from potentially
large latencies for remote interactions. Hence, for many
Grid applications, it is often mandatory to manage such
interactions asynchronously. For this reason, SAGA intro-
duces a Task model for asynchronously managing remote
jobs. Highly relevant to this model is the notion of asyn-
chronous notification.
1. Jobs: A number of GGF working groups are targeting
the various technical details for job and resource manage-
ment in Grids. Some of them do also target Grid applica-
tions, and specify job description languages, APIs etc. The
SAGA API tries to avoid to “re-inventing the wheel”, and
closely coordinates with these groups. The SAGA job
submission API follows closely the Distributed Resource
Management Application API (DRMAA), the SAGA job
description is mostly derived from the Job Specification
and Description Language (JSDL). The SAGA job states
do also follow the DRMAA specification. More details on
the relation between SAGA and the various other GGF
working groups can be found in section 3.
 The SAGA API offers programmers two noteworthy
paradigms: that of a job service, which represents a job
submission resource, and that of a remote job. A job is

 #!/usr/bin/perl -w

 BEGIN {
 use strict;
 use saga;
 }

 eval {
 # create job service
 my $js = new saga::job_service ();

 # and submit a job
 my ($job, IN, OUT, ERR)
 = $js.runJob ("ssh.university.edu",
 "/bin/date");

 # print any job output
 while ($job.getJobState () !~ /^Done/io)
 {
 print STDOUT <OUT>;
 print STDERR <ERR>;
 }

 # status is 'Done' here
 };

 # catch all saga exception
 if ($@ =~ /^saga/io)
 {
 die "saga error: $@\n";
 }

Fig. 6. Code Example: start a remote /bin/date, and retrieve output
(just for a change, that example is given in Perl)

SAGA: A Simple API for Grid Applications 15

defined by its job description, and is instantiated by submit-
ting that job description to a job service. An instantiated
job allows various control and query methods to be called,
such as suspend, resume, signal, migrate and terminate.
The job instance can also be queried for its current state,
error conditions. Input and output data files and streams
are, if required, defined in the job description.
 In order to further simplify the job submission, a job
service also offers a job_run method, which requires only
the essential job information to be given, and creates the
job description internally. The call returns the standard
input, output and error streams for the remotely run job.
The code example in Fig. 6 illustrated the usage of the
job_run method in Perl.
2. Tasks: To manage the potentially large latencies in Grid
environments, SAGA introduces an asynchronous Task
model. For each synchronous method call (e.g. file.read
(target)), that model introduces a asynchronous counter-
part (file.asynch.copy (target)). That asynchronous
method call returns a saga::task object, which offers
methods to watch the state and progress of the operation,
and to cancel it if required. The code example in Fig. 7
shows the SAGA task model applied to a remote mkdir
operation3 .

 #include <iostream>
 #include <saga.h>

 void sample_async_mkdir ()
 {
 try
 {
 // open a remote directory
 saga::directory d
 ("gsiftp://ftp.host.net/pub/");

 // create a mkdir task
 saga::task t = d.async.mkdir ("data/");

 // showing the task state
 if (saga::task::Running == t.get_state ())
 {
 std::cout << "running ..." << std::endl;
 }

 // wait forever
 t.wait (-1);

 // mkdir is done by now.
 }
 catch (saga::exception e)
 {
 std::cerr << e.get_message () << std::endl;
 }
 }

Fig. 7. Code Example: asynchronous version of the remote mkdir

example: This example should be compared to the synchronous
version in Fig. 3

3 It must be noted that the SAGA Task Model is currently under
discussion, and might change to some extend (without loss of
functionality). So the example given here should be considered
very preliminary.

 The SAGA Task Model does also include a container
class for tasks, which allows to handle large numbers of
task objects efficiently (e.g. wait for all of them to com-
plete). There are considerations to extend that task model
by allowing to have dependencies between tasks, and so to
effectively introduce workflow, but we consider such ex-
tensions to be out of scope for SAGA for now.
3. Asynchronous Notification: Tightly connected to the
topic of asynchronous method invocation is the topic of
asynchronous notification for events, such es e.g. job status
changes. The current SAGA specification abstains from
the topic, as it was initially felt that asynchronous notifica-
tion might be difficult to design for a language agnostic
API; however, the group got very specific requirements to
add simple callbacks to the API. So work is currently un-
derway to add a callback mechanism to the SAGA Task
Model, to allow for asynchronous notification on task
status changes and error conditions.

5.4. Inter-process communication
 The SAGA API provides only limited support for inter
process communication. That problem space is well sup-
ported by other, acknowledged systems. For example,
versions of MPI exist which allow for tightly coupled
communication between distributed application instances
in cluster-like setups. Secured SOAP via HTTP(S) is
a standard way to communicate with services. SAGA does
provide a Grid-equivalent of BSD-Sockets. The saga_stream
is a bi-directional communicating channel, which trans-
ports untyped binary data. The example in Fig. 8 shows
how a application uses the client side of such a communi-
cation channel.

 #include <saga.hpp>

 int main (int argc, char** argv)
 {
 // create stream to server contact in argv[1]
 saga::stream s (argv[1]);

 // open the connection
 s.connect ();

 // message to write in argv[2]
 s.write (argv[2]);

 // the stream gets destroyed at and of scope,
 // connection is closed in destructor
 }

Fig. 8. Code Example: create a streaming client

 The SAGA-WG considers to extend that support for
inter process communication, e.g. by support for typed
data, or for messages. However, such extensions are not in
the SAGA scope for now, and depend on further explicit
application use cases.

T. Goodale et al. 16

5.5. Possible SAGA Extensions (Future Work)
 As described above, the current scope of the SAGA
API specification is intentionally very limited, and drawn
from a finite set of use cases. However, the SAGA-WG has
received a number of requests to widen the scope of
the API, and a number of additional use cases for the re-
spective areas have been submitted. SAGA is intended to
follow up with these requests in future versions of
the specification. This section allows the reader a glimpse
of the SAGA future, and describes these extensions. It must
be noted though that all material described here is very
preliminary, and represents by no means any part of
the current SAGA specification.
1. Monitoring and steering: The ability to monitor remote
applications (and in fact any remote Grid resource) is inte-
gral part of a number of received use cases. SAGA cur-
rently only allows polling of specific monitorables, such as
the state of jobs and tasks. Application level monitoring
and steering is currently not supported. A number of use
cases have been submitted to the group though, which
require monitoring and steering, in particular in the context
of visualization.
 The UK-eScience project ‘RealityGrid’ [5] designed
and implemented a Grid monitoring and steering infrastruc-
ture [36]. The RealityGrid Steering API has been used
across a wide range of different scientific applications –
ranging from classical molecular dynamics, lattice-Boltz-
mann simulations and Monte-Carlo simulations of poly-
mers – providing testimony to its flexibility and breadth.
Together with the monitoring capabilities of GAT (which
derive from the monitoring package Mercury [37],
the RealityGrid API will probably form the basic input for
a future SAGA monitoring and steering API.
2. Remote Procedure Calls: As described in section 3, the
GridRPC Working Group in GGF defined another applica-
tion oriented API, which provides Remote Procedure Calls
(RPCs) in Grid environments. The GridRPC-WG and the
SAGA-WG started to actively pursue the integration of
GridRPC into SAGA. That would provide a consistent look
& feelfor both APIs, and provide Grid application pro-
grammers with a more complete and more consistent set of
programming paradigms. An example for the current can-
didate API extension is shown in Fig. 9.
 GridRPC currently uses the notion of a function handle
to invoke and manage remote procedure calls. A major
topic currently under discussion in the GridRPC Working
Group is the use of data handles to manage the flow of
arguments between successive remote calls. Such data
handles could possibly be managed as remote files in the
SAGA API whose lifetime could be explicitly determined
by the user, but could also be automatically determined by
the lexical scoping of the data handle.

 #include <iostream>
 #include <list>
 #include <saga.h>

 void sample_rpc ()
 {
 try
 {
 // initialize rpc function handle
 saga::rpc handle
 ("gridrpc://remote.host.net/bin_date");

 // initialize in/out argument stack
 std::list<std::string> stack;

 // call the remote function
 handle.call (stack);

 std::cout << stack.pop_front () << std::endl;
 }
 catch (saga::exception e)
 {
 std::cerr << e.get_message() << std::endl;
 }
 }

Fig. 9. Code Example: potential RPC representation in SAGA

3. Checkpoint and Recovery: The GridCPR Working
Group in GGF is, as also described in section 3, defining an
API which allows applications to interact with its Grid
Checkpointing and Recovery infrastructure. That API
would also benefit from the coherent look & feelprovides.
Discussions with the GridCPR group have been started,
and an future inclusion of the GridCPR API into the scope
of SAGA is evaluated.

6. CONCLUSIONS

 The advent of the new, exciting, promising, but also
complex Grid technology left application programmers
wanting. The Simple API for Grid Application addresses
their need for a simple, stable and standardized program
development environment.
 The SAGA API is defined in synchronization with all
related efforts inside GGF, such as the DRMAA, JSDL,
GridCPR, GridRPC and OGSA WGs. With OGSA, we are
specifically investigating the mapping of service-oriented
architectures into the SAGA API. We are working closely
with the known related efforts outside GGF, such as the
Grid Application Toolkit (GAT) from the EU GridLab
project, the Commodity Grid (CoG) Toolkits from the
Globus project, and the RealityGrid application monitoring
and steering infrastructure.
 The requirements for the SAGA API scope and struc-
ture are drawn from a reasonably large set of application
use cases. In order to produce a usable API specification
timely (the perceived need for that API is continually in-
creasing), a design team was formed in side the SAGA-
-WG. That design team drafted the SAGA Strawman API,
which is currently under scrutiny to check its suitability for

SAGA: A Simple API for Grid Applications 17

the SAGA use cases. This article has presented the SAGA
Strawman API and illustrated the simplicity of its usage
with a number of code examples.
 The future work of the group is to finalize the API speci-
fication, to support the various ongoing reference imple-
mentation efforts, and to later expand the scope of the
SAGA API to other relevant areas covered by the respec-
tive use cases.

Acknowledgments
 The presented work is the result of a very large com-
munity effort, and the number of involved people is way
too large to list them all individually. That list includes a
large number of application developers which provided
input to the SAGA Working Group in form of use cases.
The input and discussions with the other working groups in
GGF has been crucial to the successful design and scoping
of the SAGA API. The design team, whose members have
already been mentioned, have invested significant time and
effort to draft the current SAGA API. All projects listed in
the related work section, funded by a large and diverse set
of institutions and funding agencies, have been in close
contact with the SAGA effort, and actively participated in
shaping the SAGA API. The SAGA Working Group wants
to thank all of them.

References
 [1] GGF. (2004) Simple API for Grid Applications Research

Group. [Online]. Available:
http://forge.gridforum.org/projects/saga-rg/

 [2] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Good-
ale, T. Kielmann, A. Merzky, J. Nabrzyski, J. Pukacki,
T. Radke, M. Russell, E. Seidel, J. Shalf and I. Taylor,
Enabling Applications on the Grid – A GridLab Overview,
International Journal on High Performance Computing Ap-
plications 17(4), 449-466 (2003).

 [3] G. Allen, K. Davis, T. Goodale, A. Hutanu, H. Kaiser,
T. Kielmann, A. Merzky, R. van Nieuwpoort, A. Reinefeld,
F. Schintke, T. Schütt, E. Seidel and B. Ullmer, The Grid
Application Toolkit: Towards Generic and Easy Applica-
tion Programming Interfaces for the Grid, Proceedings of
the IEEE, 93(8), 534-550 (2005).

 [4] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, A Java
Commodity Grid Kit, Concurrency and Computation: Prac-
tice and Experience 13, 643-662 (2001). [Online]. Availa-
ble: http:/www.cogkit.org/

 [5] RealityGrid Project. (2005) The RealityGrid Project. [Onli-
ne]. Available: http://www.realitygrid.org/

 [6] Particle Physics Data Grid. [Online]. Available:
http://www.ppdg.net

 [7] Illinois BioGrid. [Online]. Available:
http://gridweb.cti.depaul.edu/twiki/bin/view/IBG/AboutIBG

 [8] GGF. (2004) Data Replication Research Group. [Online].
Available: http://forge.gridforum.org/projects/jsdl-wg/

 [9] D. Darlin, A Journey to a Thousand Maps Begin With an
Open Code, New York Times, Oct. 20th, 2005. [Online].

Available: http://www.nytimes.com/2005/10/20/technology/
circuits/20maps.html? emc=eta1

 [10] I. Foster et al., The Open Grid Services Architecture, Ver-
sion 1.0, January 2005,
http://www.ggf.org/documents/GFD.30.pdf.

 [11] GGF. (2003) Distributed Resource Management API Wor-
king Group. [Online]. Available:
http://forge.gridforum.org/projects/drmaa-wg/

 [12] H. Rajic, R. Brobst, W. Chan, F. Ferstl, J. Gardiner,
A. Haas, B. Nitzberg, H. Rajic and J. Tollefsrud, Distrib-
uted Resource Management Application API Specification
1.0, Global Grid Forum, Tech. Rep., June 2004, GFD.022.
[Online]. Available:
http://www.ggf.org/documents/GFD.22.pdf

 [13] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee,
and H. Casanova, An Overview of GridRPC: A Remote
Procedure Call API for Grid Computing, in 3rd Interna-
tional Workshop on Grid Computing, vol. 2536.1em plus
0.5em minus 0.4emSpringer-Verlag, Lecture Notes in
Computer Science, pp. 274-278, November 2002.

 [14] D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, C. Fabia-
nek, T. Hiroyasu, E. Meek, M. Miller, K. Sagi, K. Seymour,
Z. Shi and S. Vadhiyar, Users’ Guide to NetSolve V2.0, The
NetSolve Project, Innovative Computing Laboratory, De-
partment of Computer Science, University of Tennessee,
Tech. Rep., 2004. [Online]. Available:
http://icl.cs.utk.edu/netsolve/

 [15] Y. Tanaka, H. Nakada, S. Sekiguchi, T. Suzumura and
S. Matsuoka, Ninf-G: A reference implementation of RPC-
based programming middleware for Grid computing, Journal
of Grid Computing 1(1), 41-51, (2003). [Online]. Available:
http://ipsapp009.kluweronline.com/content/getfile/6160/1/3
/abstract.htm;
http://ipsapp009.kluweronline.com/content/getfile/6160/1/3
/fulltext.pdf

 [16] E. Caron and F. Desprez, DIET: A Scalable Toolbox to
Build Network Enabled Servers on the Grid, International
Journal of High Performance Computing Applications
2005, to appear.

 [17] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra, C. Lee
and H. Casanova, A GridRPC Model and API for End-User
Applications, September 2005,
http://www.ggf.org/documents/GFD.52.pdf.

 [18] GGF. (2003) Grid Checkpoint Recovery Working Group.
[Online]. Available:
http://forge.gridforum.org/projects/gridcpr-wg/

 [19] GGF. (2004) Grid File Systems Working Group. [Online].
Available: http://forge.gridforum.org/projects/gfs-wg/

 [20] Resource Namespace Service - Proposed Final Draft v1.3.
[Online]. Available: http://forge.gridforum.org/projects/gfs-
wg/document/Resource\s\do5(N)amespace\s\do5(S)ervice\s
\do5(P)roposed\s\do5(F)inal\s\do5(D)raft\s\do5(v)1.3/en/2

 [21] GGF. (2004) ByteIO Working Group. [Online]. Available:
http://forge.gridforum.org/projects/byteio-wg/

 [22] GGF. (2001) GridFTP Working Group. [Online]. Availa-
ble: http://forge.gridforum.org/projects/gridftp-wg/

 [23] GGF. (2004) Job Submission and Description Language
Working Group. [Online]. Available:
http://forge.gridforum.org/projects/jsdl-wg/

 [24] GGF. (2003) Persistent Archives Research Group. [Online].
Available: http://forge.gridforum.org/projects/pa-rg/

 [25] GGF. (2004) OGSA Replication Services Working Group.
[Online]. Available:
http://forge.gridforum.org/projects/jsdl-wg/

T. Goodale et al. 18

 [26] R. Moore and A. Merzky, Persistent Archive Concepts,
Global Grid Forum, Tech. Rep., December 2003, GFD.026.
[Online]. Available:
http://www.ggf.org/documents/GFD.26.pdf

 [27] GridLab Project. (2002), The Replica Management Service.
[Online]. Available: http://www.gridlab.org/data

 [28] I. Foster, C. Kesselman and S. Tuecke, The Anatomy of the
Grid: Enabling Scalable Virtual Organizations, Interna-
tional Journal of Supercomputer Applications 15(3), 2001.

 [29] K. Davis, T. Goodale and A. Merzky, GAT API Specifica-
tion: Object Based, EU Project GridLab, Deliverable D1.5,
June 2003. [Online]. Available: http://www.gridlab.org/
WorkPackages/wp-1/Documents/Gridlab-1-GAS-
0004.ObjectBasedAPISpecification.pdf

 [30] G. von Laszewski, I. Foster, J. Gawor, and P. Lane, A Java
Commodity Grid Kit, Concurrency and Computation: Prac-
tice and Experience, 13(8-9), 643-662 (2001),
http://www.cogkits.org.

 [31] D. C. D. Lawrence Berkeley National Laboratory, Computa-
tional Research Division. (2005) Python Globus (pyGlobus).
[Online]. Available: http://dsd.lbl.gov/gtg/projects/pyGlobus/

 [32] S. Jha, P. V. Coveney, M. Harvey and R. Pinning, SPICE:
Simulated Pore Interactive Computing Environment, Pro-
ceedings of ACM/IEEE Supercomputing Conference 2005,

http://sc05.supercomputing.org/schedule/pdf/anal109.pdf
http://sc05.supercomputing.org/schedule/pdf/anal109.pdf.

 [33] The TeraGyroid Experiment, Accepted for GGF10 Applications
Workshop. [Online]. Available: http://www.realitygrid.org/
TeraGyroid-Case-Study-GGF10.pdf,
http://www.realitygrid.org/TeraGyroid-Case-Study-GGF10.pdf

 [34] R. Berlich, M. Kunze and K. Schwarz, Grid computing in
Europe: from research to deployment, in CRPIT ’44: Pro-
ceedings of the 2005 Australasian workshop on Grid com-
puting and e-research.1em plus 0.5em minus 0.4emDarling-
hurst, Australia: Australian Computer Society, Inc., pp. 21-27,
2005.

 [35] S. D. Team, (2005) Simple API for Grid Applications –
Strawman API Version 0.2. [Online]. Available:
http://wiki.cct.lsu.edu/saga/space/start/strawman-api-v0.2.pdf

 [36] S. Pickles, R. Pinning, A. Porter, G. Riley, R. pert Ford,
K. Mayes, D. Snelling, J. Stanton, S. Kenny and S. Jha, The
realitygrid computational steering api version 1.1, Reality
Grid, Tech. Rep., 2004,
http://www.sve.man.ac.uk/Research/AtoZ/RealityGrid/Stee
ring/ReG\s\do5(s)teer ing\s\do5(a)pi.pdfe-print.

 [37] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki,
Z. Balaton and G. Gombás, P-GRADE: A Grid Program-
ming Environment, Journal of Grid Computing, 2, 171-197
(2003).

TOM GOODALE has been the chief architect and lead developer of the Cactus Framework since 1998. He is
a research associate in the Schools of Computer Science and Physics and a part-time research associate at the
Center for Computation & Technology at Louisiana State University. Goodale has been involved in a number
of Grid projects, in particular in the GridLab project, where he was leader of Work Package 1: The Grid Ap-
plication Toolkit and a member of the technical board, holding the post of Quality manager for the first year of
the project. He is a founding chair of the Simple API for Grid Applications Research Group (SAGA-RG)
within the GGF. Goodale received his BA in Theoretical Physics from Cambridge University in 1992, and,
after obtaining the Certificate of Advanced Study in Applied Mathematics and Theoretical Physics from Cam-
bridge in 1993, worked as a software engineer in the Oil and Gas industry before returning to academia in
1996. He received a masters in Computational Fluid Dynamics from Cranfield University in 1998. His inter-
ests include high performance computing, frameworks, grid computing, CFD and numerical relativity.

SHANTENU JHA is a postdoctoral research fellow at the Center for Computational Science at University Col-
lege London. His research interests include Grid computing and computational physics. Jha has degrees in
computer science and physics from Syracuse University and the Indian Institute of Technology, Delhi. He is
a member of the Global Grid Forum and the American Physical Society. Contact him at s.jha@ucl.ac.uk.

HARTMUT KAISER got his MS in Computer Science from the Leningrad Electrotechnical University, Peters-
burg, Russia, in 1985, a Ph.D. and the habilitation in Computer Engineering, in 1988, both from the Technical
University of Chemnitz, Germany. Currently he is with the Center of Computation and Technology (CCT) at
Louisiana State University in Baton Rouge, U.S.A., where he is responsible for the integration of different
applications with computational and data Grids. His research interests include application programming inter-
faces, parsing problems and the C++ programming language in general.

SAGA: A Simple API for Grid Applications 19

THILO KIELMANN is Associate Professor at the Department of Computer Science of Vrije Universiteit. He
received his diploma in Computer Science from Darmstadt Universi ty of Technology, Germany, in 1992,
a Ph.D. in Computer Engineering in 1997, and the habilitation in Computer Science in 2001, the latter both
from the University of Siegen, Germany. His research interests include computational grids, performance
analysis of networked applications, and parallel and distributed programming.

PASCAL KLEIJER received his Master of Science in Computer Science (Software Architecture) in 1999 at
the Swiss Federal Institute of Technology in Lausanne. He has worked since on different projects related to
Web services and lately Grid services. His interest is mostly in the end-user applications stacks with Grid
technologies and therefore is motivated by the outcome of the Simple API for Grid Applications Research
Group (SAGA-RG) within the GGF. He currently works for the HPC marketing promotion division at NEC
Corporation.

GREGOR VON LASZEWSKI is a Scientist at Argonne National Laboratory and a fellow of the Computation
Institute at University of Chicago. He received a Masters Degree in 1990 from the University of Bonn, Ger-
many, and a Ph.D. in 1996 from Syracuse University in computer science. He is involved in Grid computing
since the term was coined. Current research interests are in the areas of parallel, distributed, and Grid comput-
ing. Specifically, he is working on topics in the area of using commodity technologies within Grid services,
applications, and portals. He serves on multiple Grid related conferences. He is the principal investigator of the
Java Commodity Grid Kit which provides the current basis for many Grid related projects including GT3 and
GT4 (http://www.cogkits.org).

CRAIG A. LEE is a Section Manager in the Computer Systems Research Department of The Aerospace Corpo-
ration, a non-profit, federally funded, research and development center. Dr. Lee has worked in parallel and
distributed computing for the last twenty years. He has been application prototype builder with a strong focus
on experimental languages, tools and environments. Dr. Lee has also conducted DARPA and NSF sponsored
research in grid computing, optimistic models of computation, active networks, and distributed simulations, in
collaboration with USC, UCLA, Caltech, ANL, and the College of William and Mary. This work has led
naturally to Dr. Lee's involvement in the Global Grid Forum as Area Director for Industrial Applications and
a Co-Chair of the GridRPC Working Group. He is also on the Steering Committees for Grid `XY and CCGrid,
and has served on the program committee for many other meetings. He has been a panelist for the NSF, DOE,
NASA, and an international evaluator for INRIA. Dr. Lee has co-authored over fifty technical works and has
lectured undergraduate computer science courses at UCLA.

ANDRE MERZKY is a Computer Scientist at the Vrije Universiteit, Amsterdam. He studied in Leipzig, Berlin
and Edinburgh, and helds a Masters Degree in Physics. He has worked on Grid-related topics concerning data
management, visualization, and high level APIs for several years, and is actively involved in the Global Grid
Forum (GGF). Pascal received his Masters Degree in Computer Science from the Swiss Federal Institute of
technology in Lausanne in 1999.

T. Goodale et al. 20

HRABRI L RAJIC is a senior staff software engineer with Intel since 2000, working in Advanced Parallel Soft-
ware Platforms group leading a team working on storage and data streaming related projects. He has been
involved with the SAGA research group since its early days. In 2001, he has co-founded GGF DRMAA work-
ing group, where he serves as a co-chair. Hrabri has been involved with distributed computing from 1998,
leading DLS-OPT and Portable Application Distributor projects, the technologies presented in publications
about car crash analysis and computations chemistry calculations on a grid of workstations. After a publication
prolific period as a computational reactor physicist in mid 1980ies, he lead a design and implementation of
parallel and vector basic linear algebra routines and iterative solvers that were part of KAI Inc. numerical
libraries. He was a member of the KAI KAP/Pro Toolset (KPTS) team responsible for GuideView OpenMP
parallel performance graphical viewer product in mid 1990ies.

JOHN SHALF is Computer Scientist at the NERSC Division of Lawrence Berkeley Laboratory, University of
California. His degree is in electrical engineering, but he has contributed to a variety of projects in networking,
distributed computing, application code frameworks, and scientific visualization.

COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 12(1), 7-20 (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

