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1.  INTRODUCTION 

 Packet reordering is yet another network Quality of 
Service (QoS) parameter that has to be taken into account 
in modern networking. This not clearly understood and 
a common phenomenon is affecting leading-edge broad-
band solutions such as those implemented by many 
National Research and Education Networks (NRENs) and 
GÉANT. The general sources of packet reordering are 
known, but not many realise this, and for many more, 
reordering is still Terra Incognita.  
 The question of whether packet reordering is pathologi-
cal network behaviour has been already considered in 
related work. Following the IP protocol specification, we 
have to admit that reordering, in the principle, is not a fault 
of the IP protocol mechanism, but rather something that 
may happen and we should prepare for it. In other words, 
the IP protocol provides the delivery of packets, while does 
not necessarily maintain the order of packets.  
 In this paper, we show what reordering is, what are the 
standardisation approaches to reordering metrics, how to 
measure it and which applications are likely to suffer from 
it. We also show some experimental results from pan-
European packet-reordering measurements.  

 

2.  THE DEFINITION  OF  PACKET  REORDERING 

 Packet reordering is one of the four metrics describing 
QoS in packet networks: delay, loss, jitter and reordering. 
Loss, delay and jitter have been well described, 
their measurement standardised and the influence on 
user applications quite thoroughly tested. Packet re-
ordering occurs when the order of packets at the de-
stination is different than the order of the same packets at 
the source. In other words, in a non-reordered packet 

stream, the packet sequence number of any arriving packet 
will be lower than the sequence number of the consecutive 
arriving packet. The following example shows a situation 
with reordered packets; the reordered sequences are under-
lined. 
 

source                                     destination 

1 2 3 4 5 6 7 8 9 10 -------------------> 1 2 4 5 6 3 7 10 9 8 

Fig. 1. A sample of a reordered packet flow 

 
 The measurements of packet reordering are currently 
based on the “percentage of reordered packets”. However, 
this definition, probably derived from the popular “ping-
type packet loss” metric, does not provide the precise and 
adequate information that is required, especially for trou-
bleshooting. Taking the example from Fig. 1, and using 
a simple “percentage definition” we may state that:  
 a)  there is 30% packet reordering (because packets 3, 9 
and 8 are late);  
 b) there is 50% packet reordering (because packets 4, 5, 6 
and 10 and 9 are too early).  
 Another example shows even worse disinformation 
resulting from using a percentage definition: 
  

source                      destiination 

1 2 3 4 5 6 7 8 9 10 -------------------> 2 3 4 5 6 7 8 9 10 1 

Fig. 2. A sample of a reordered packet flow 
 
 In this case, one may consider the following results:  
 a) there is 10% packet reordering (because packet 1 is 
late);  
 b)  there is 90% packet reordering (as all packets except 1 
are early).  
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 At the same time, having only a percentage measure-
ment, we do not know other specific facts about the 
reordering, such as the extent (by how many positions was 
the packet displaced, how often it happened, was it bursty 
or flat rate?).  
 The need for proper packet reordering measurement has 
become so important due to popularity of TCP protocol and 
instant measurement of other IP metrics. For example, the 
TCP protocol can tolerate packet displacement by 1 or 2 
positions, and its embedded mechanisms will be able to 
sort these packets back in order. However, if this level is 
reached, TCP will still receive the reordered packets (the 
packet loss at IP level will be 0%) but will drop them, 
assuming packet loss and adjusting the transmission 
window (by default, reducing it by half). A similar situa-
tion may occur, for instance, when the fact of arrival of 
a packet with higher sequence number may cause 
the application to count displaced packets as lost. Similarly, 
the measurement of reordering can be affected by packet 
duplicates.  
 The interaction between IP and higher level protocols 
has been well described in several works, where we can 
read that “real protocols and applications are optimised 
around common case assumptions about how real Internet 
infrastructures behave under normal conditions. Conse-
quently most protocols assume that corruption, packet loss 
and reordering are infrequent events or occur primarily 
under deterministic conditions.” It is clear that if these 
assumptions are not met, the performance of these proto-
cols will suffer.  
 The fact, that the proper packet reordering measurement 
is important for particular applications and protocols, has 
led the Internet Engineering Task Force (IETF) to initiate 
a packet reordering standardisation track.  
 The standardisation of metrics and the measurement of 
packet reordering are currently within the scope IETF IPPM 
working group, which recently released “draft-ietf-ippm- 
-reordering-10.txt” and “draft-jayasumana-reorder-density- 
-04.txt”. Both metrics propose slightly different approaches 
to reordering.  
 Reorder Density and Reorder Buffer-occupancy Den-
sity (draft-jayasumana-reorder-density04. txt) are a very 
simple yet informative metrics for assessing the reordering 
characteristics and the required reordering recovery 
mechanisms (there are more metrics defined in the draft, 
but here we focus only on a selection of them).  
 Reorder Density shows the distribution of displace-
ments of packets from their original positions, including 
lost and duplicated packets, within given threshold packet 
sequence. This means that if the threshold is set to 10, any 
packet displaced by more than 10 positions will be consid-
ered lost.  
 Reorder Buffer-occupancy Density shows the histo-
gram of the occupancy of a hypothetical buffer, used as 
a waiting room by early packets (re-ordering buffer). 

The calculation of this metric is performed upon each 
packet arrival at the receiver.  
  

Fig. 3. Sample worst-case Reorder Density graph for 
the PIONIER-GEANT-CESNET connection 

 
 A sample Reorder Density graph is shown in Fig. 1. 
The bars here correspond to the total percentage of packets 
that were displaced by given number of positions. It is easy 
to see that some 6% of the packets were late by one 
position, 20% were early by one position and only 70% of 
the packets arrived in order. Also some of the packets were 
displaced by 10 positions.  
 Other important information that can be derived from 
the chart is the actual packet loss encountered by the TCP 
application: in our case, assuming that the TCP protocol 
can handle the maximum displacement by 2 positions, we 
have to sum the bars from position 0, 1 and 2. This is 
roughly 79%, which corresponds to the amount of packets 
accepted by the TCP protocol. 21% of the packets will be 
considered lost by TCP protocol, which will definitively 
reduce the achievable transmission rate (even though all 
three networks were highly over-provisioned at a time).  
 Draft-ietf-ippm-reordering-10.txt defines reordering with 
a slightly different purpose. Rather than drawing the histo-
gram of the displacement (Reorder Density), the draft 
defines: 
   • the Extent of Reordering (showing the displacement for 
each packet – i.e., how much too early the packet has 
arrived);  
 

 

Fig. 4. The Extent of Reordering graph 
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   •  the Byte Offset – the storage space in buffer required to 
restore order;  
 

Fig. 5. The Byte Offset graph 
 

   •  the Time Offset – the amount of time needed to hold the 
reordered packet until all preceding packets arrive;  
 

Fig. 6. The Time Offset graph 
 
 For each of above metrics, the draft defines the maxi-
mum value (i.e. Maximum of Extent), which can be di-
rectly used for application tuning. Presented metrics can 
also be very handy for network troubleshooting, as they 
allow timely observation of changing network behaviour.  
 

3.  THE  SOURCES  OF  PACKET  REORDERING 

 There are many sources of packet reordering. The most 
common are:  
   •  all kinds of parallelism in the network; 
   •  network faults; 
   •  improper configuration; 
   •  faulty software 
   •  special QoS/performance configuration.  
 Probably the most important and common source of 
packet reordering results from the need to increase the 
performance of the routing and switching devices in the 
networks by re-utilising existing solutions in a parallel 
way, e.g., by adapting the existing equipment to new kinds 
of interfaces. The reordering here may be introduced by:  
Link bundling – in situations where single link capacity is 
not sufficient between two network devices, link bundling 
can be applied to increase the total link capacity; the 

reordering can occur here if the routine scheduling packets 
to individual physical links works with “packetbased” 
regime, rather than with “flow-based” one; 
Parallel processing within the network devices. The back-
plane and the packet processors of the network devices 
have limited capacity. In order to increase the total device 
capacity, multiple backplane queues and packet processors 
to interface boards can be implemented in parallel. Here 
again the extent of reordering depends on the queuing 
regime. This is often visible in early releases of equipment 
and less likely to exist in mature solutions, where the 
processors become more powerful and the parallel 
solutions are no longer needed. 
 The root cause for reordering in the above cases is the 
asynchronous work of the processors and queues of the 
device. The packet is held in the queue as long as it is 
necessary to process it, with the time dependent on the 
packet size, type or additional packet checks resulting from 
firewall configuration or QoS routines applied. As a conse-
quence, the packets with longer processing time can be 
bypassed by packets with shorter processing time and 
which arrived later to other queues.  
 It is important to note here that the choice of the queu-
ing regime (if possible) cannot be done without penalties. 
The use of a “flow-based” queuing regime reduces or 
removes the reordering (all packets from the flow enter 
the same queue) but this implies that all the packets from 
a flow have to enter the same queue, usually with 
the capacity of a fraction of the whole interface. This limits 
the maximum flow size to the queue size or to be more 
precise – to the available capacity in the queue selected by 
the hashing function of the regime.  
 We will show some practical observations in following 
paragraphs.  
 
3.1. Reordering in Juniper M160, OC-192 interfaces  
 This is a typical example of packet reordering in-
troduced by the use of four parallel processors, each with 
the capacity of 2,5 Gbit/s to serve a single 10Gbit/s 
interface. The independent test results presented at Light-
Reading show that reordering here will not happen until the 
card has 73% of load, or 56% of load in the worst case, 
when customer traffic is composed only of 40byte IP 
packets.  
 Unfortunately none of the modern reordering measure-
ment definitions were present at the time of tests, so we are 
able only to see the “percentage of reordered packets” 
which is a somewhat imprecise metric.  
 The charts, however, clearly show that the reordering 
occurs when different sizes of packets are present, and is 
rather rare for equal size packets.  
 The document also states that reordering made by 
individual routers along the path is not cumulative. This 
has been confirmed experimentally by our tests in the 
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GÉANT network. We have found that the measured pa-
rameters between different GÉANT NRENs do not depend 
on the number of hops traversed by the packet stream.  
 

 

Fig. 7. Juniper reordering measurement results 
 
 Another interesting observation of reordering phenome-
non in GÉANT is those resulting from LBE (Less than Best 
Effort) transmission tests. The experiments here had to 
investigate the behaviour of LBE traffic in the presence of 
BE streams. A side observation shows that “the percentage 
of out-of-order packets is proportional to the packet rate 
injected; the larger the packet rate, the higher probability of 
receiving some out of sequence packets”. It was further 
found that reordering here was caused by the platform 
architecture (M160) and the different weights assigned to 
Best Effort (BE) and LBE queues. The stated results claim 
that the proper configuration of weight for different classes 
can assure no negative effect of reordering on TCP trans-
mission.  
 
3.2. Reordering in 10GE cards of Black Diamond 

   switches (BD 6808 and 6816)  
 Similar to Juniper routers, Black Diamond also imple-
ments parallel processing in the 10GE line cards. The prob-
lem here lies in the outdated architecture of the switch, 
which was initially designed to support maximum 1Gbit/s 
interfaces. Original cards used in BD6806 were supporting 
8x1GE interfaces; therefore the backplane connection was 
also composed of 8x1GE queues. After 10GE standards 
had been announced, the company released 10GE cards. 
Unfortunately these cards had to be served by the same 
8x1GE queues, already implemented in the backplane. 
The switch offers two queuing regimes for the 10GE card: 
packet-based and flow-based. The former schedules each 
incoming packet to a different queue, introducing signifi-
cant reordering. The latter preserves packet order, but 
limits the single flow capacity to the queue size. This is 
very unfortunate, because in ideal conditions (empty net-
work) the size of a single flow cannot exceed 1 Gbit/s 
(7 Gbit/s remains unused and unavailable for that flow). 
The situation is even worse in the presence of Internet 

traffic (multiple different flows), where each queue already 
has some background traffic scheduled. As an example, if 
the single link has 4Gbit/s of traffic load, it means that 
average queue load is 500Mbit/s. Each new flow will 
encounter congestion conditions when its size reaches 
500Mbit/s, even if there is still 4 Gbit/s of free bandwidth 
on the switch. There is no known reordering work-around 
to solve this problem.  
 

4.  REORDERING  MEASUREMENT  AND  RESULTS 

 Packet reordering measurement does not require any 
sophisticated tools or significant investments. For the 
purpose of testing the end- to-end reordering in GÉANT, 
we have used the simple, open source software traffic 
generator RUDE/CRUDE and some custom-built post-
processing scripts. A selection of metrics from both of the 
mentioned IPPM standards have been implemented and the 
measurement collected in a mesh scenario, between 
CESNET, HUNGARNET, HEAnet, LITnet, PIONIER, 
FCCN and NORDUnet. A special script has been also 
made available for other users to measure packet reordering 
in their own samples.  
 

 
 

 
Fig. 8. The results of reordering for multimedia stream and worst 

case reordering 
 
 During our experiments we sent test streams with 
the traffic patterns simulating a few selected applications, 
including:  

Mcast_ogg 

x 100%

Worst case 

x 100%
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   •  traffic flow designed especially to measure the maxi-
mum possible reordering where a burst of small packets 
immediately follows a burst of large packets;  
   • bursts of short packets of the same size;  
   •  bursts of long packets of the same size;  
   •  real trace of a JMStudio mpeg video stream (JMStudio 
is a Java application using JMF 2.0 API to play, capture, 
transcode, and write media data; JMStudio also uses the 
JMF RTP APIs to receive and transmit media streams 
across the network);  
   • real trace of a VideoLAN Client;  
   •  real trace of MCast6 – our own application streaming in 
OGG format  
   •  real trace of an IceCast application (OGG). 
 The following conclusions could be drawn from the 
above measurements:  
 a) the streams of packets of the same size were not af-
fected by reordering;  
 b) the specifics of multimedia streams make them very 
sensitive to packet reordering;  
 c)  there was not much difference between the results of 
the “worst case” scenario and multimedia streams;  
 d) only VideoLAN client was immune to reordering (due 
to the equal size of the packets).   
 

4.  IMPLICATION  OF  REORDERING  
ON  THE  APPLICATIONS 

 The tolerance of the application to reordering depends 
on many factors, including packet transmission rate, packet 
size, type of the transport protocol used, capacity of receive 
buffers, application purpose, etc.  
 The most vulnerable applications are those that generate 
small packets followed closely large packets in a single 
stream. This implies that slow-rate (in the microscopic 
scale) applications are not likely to be affected by packet 
reordering. It has to be noted (and we confirmed that 
experimentally) that slow applications with large burstiness 
could be affected, because even though the average transfer 
rate is low, reordering may occur within packet bursts, 
where the packets are closer to each other.  
 Another important issue is the transport protocol. Two 
transport protocols – TCP and UDP are the most common 
in Internet. TCP uses a transmission window mechanism, 
which adapts to current network conditions (packet loss) by 
resizing itself. However, in many cases, TCP will not 
distinguish packet reordering from packet loss, because it 
will treat a packet reordered by three positions (or a packet 
which came three packets later than expected) as lost 
packet. The detection of false packet loss will cause the 
transmission window to downsize, affecting overall trans-
mission throughput. Related work shows some approaches 
to more reordering- resilient TCP implementations. During 
our experiments, we have observed reordering greatly 
exceeding the order of three packets over many European 

links, which will definitely influence TCP throughput of 
many high-bandwidth, demanding applications.  
 The UDP protocol is mainly used for media streaming 
over the Internet and for highly interactive services, such as 
videoconferencing or Voice over IP. These services have 
one important feature – if the data (such as digitised speech 
during videoconference) is not delivered on time, it can be 
as well discarded, because after certain time period, this 
data is no longer needed. During our experiments we have 
tested the traffic patterns of various applications, including 
JMStudio, Video Lan Client and IceCast Ogg audio 
streams to asses their vulnerability to packet reordering.  
 One of the results of traffic analysis is that some 
application modifications are necessary to deal better with 
reordering-impaired networks. As an example, the trace 
from IceCast Ogg shows the following packet pattern (for 
two consecutive voice packets):  
 

frame size time from the last frame 

1024  0.349454  

1024  0.000089  

1024  0.000086 (1st voice packet) 

1024  0.000097  

    88  0.000004  

1024  0.319239  

1024  0.000087  

1024  0.000087 (2nd voice packet) 

1024  0.000087  

118  0.000015  

Fig. 9. A sample frame pattern of IceCast Ogg stream 
 
 We can see from this pattern that when the application 
sends the traffic in a bursty way, one voice packet is 
packed into 5 frames, with the last smaller one, carrying 
the remaining part of data. The frames carrying one packet 
are sent almost simultaneously, and then the application 
waits to assemble another voice packet. This application 
has been found to be vulnerable to reordering, as the last 
small packet usually bypassed one preceding packet during 
all transmissions. However, the application uses the TCP 
protocol for transmission, allowing compensation for such 
a level of reordering.  
 

5.  SHALL  WE  WORRY  ABOUT  PACKET 
REORDERING? 

 The answer to that question is not straightforward. 
Reordering is quite common in Internet now and will stay 
common in the future. The only way to harness reordering 
is to learn what it is, what are its implications for ap-
plications and how to protect them from this phenomenon. 
However, the biggest problem is that the most common 
protocols, invented in the time of kilobit/s transmissions, 
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are still the main transport protocols of modern gigabit 
networks. They cannot cope well with reordering, so one 
option would be to look towards limiting the reordering in 
the network devices. The practice shows that even the largest 
and strongest market players cannot avoid troubles with 
reordering in their devices. It is very important, then, to 
recognise all the pitfalls related to reordering in network 
equipment and to properly evaluate any device to be imple-
mented in specialised broadband networks. This is especially 
important for the research community, requesting undis-
turbed transmission of high-bandwidth streams. At the same 
time, more work is required to assess the influence of 
reordering on various transport protocols and to develop new 
kinds of reordering-resilient transport protocols.  
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