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Abstract: The Poincaré plot (PP) is one of the many techniques used for ascertaining the heart rate variability, which in turn is a marker of 
the activity of the autonomic system. Poincaré plots are very simple to produce, but their preparation involves a few fine points. This paper 
describes one of them, namely the filtering of data used for the Poincaré plot. We show the correct way of filtering data, present a few results 
of not filtering or incorrect filtering and demonstrate how proper filtering helps extract interesting information from the data. A few 
algorithms for preparing Poincaré plots, filtering data and calculating PP descriptors are included. As Matlab’s programming language is 
the unquestionable standard for data analysis in the medical sciences, we illustrate these algorithms by snippets of code in this language.  
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1. INTRODUCTION 

 Computers allow to analyse vast amounts of data. This 
apparently trivial fact is essential, however, as the use of 
computers as machines for analysing data gives us access to 
previously unavailable information. This is especially true of 
the medical sciences – a few dozen years ago the analysis of, 
for example, an electrocardiogram (ECG) was based on a re-
cording lasting a few minutes at the most, as it is impossible 
for humans to analyse longer recordings. Now, the modern 
instrumentation, like for example the Holter recorder, allows 
to gather data from recordings which are 24 hours long (or 
longer), and the modern computer methods of data analysis 
allow the researcher or medical expert to derive various 
summary parameters, analyse recurring patterns, transform 
the data and much more.  
 The Poincaré plot (PP) is one such computer technique 
which makes it possible to analyse short as well as long re-
cordings. It is both: a visual technique which can make use of 
the human eye's ability to recognize patterns, and a quantita-
tive one, in the sense that it introduces various parameters 
(called descriptors) which quantify the information contained 
in a Poincaré plot [1, 2].  
 The Poincaré plot is a tool developed by Henri Poincaré 
for analyzing complex systems. It has found its use in such 
diverse fields as physics and astronomy, geophysics, meteor-
ology, mathematical biology and medical sciences [3]. In the 
context of medical sciences it is mainly used for quantifying 
the heart rate variability (HRV) and proves to be quite an 
effective measure of this marker [1, 2, 4].  
 The PP technique summarizes the entire recording, at 
the same time making it possible to extract the information on 
short and long time behaviour of the system (heart action in 

this case). It is very resistant, and a reasonable Poincaré plot 
may be produced even from a recording containing a large 
amount of outliers and artifacts. In this, it is superior to, e.g., 
the Discrete Fourier Transform (DFT) (usually realized by the 
Fast Fourier Transform (FFT) algorithm), where all outliers 
and artifacts must be noticed and dealt with. Any failure in 
this respect produces an unreliable result.  
 So, the question arises, why Poincaré plots should be 
filtered at all. There are two reasons. The first of them is 
the obvious one: if it is possible to remove artifacts from 
the recording, it should be done, so as to improve the quality 
of the data and the Poincaré plot. The second one is perhaps 
more important and certainly more interesting: we filter 
the Poincaré plot to access the information on the sinus 
rhythm (see Section 2), which is usually mixed with some 
other information. Accessing the information on sinus rhythm 
is important as many of the conclusions drawn from HRV 
analysis (like for example the one saying that HRV is reduced 
in illness and old age [4]) refer to the sinus rhythm.  
 The paper is organized as follows. Section 2 introduces 
the reader to the problem of HRV and gives background 
knowledge on the action of the heart. The third section intro-
duces the Poincaré plot and the descriptors used to character-
ize it. In Section 4 we give general guidelines for filtering PPs 
and describe three filters which we routinely use in our 
research. Section 5 gives examples for the usefulness of the 
filtering procedures and describes their relation to the Poin-
caré plot decomposition technique [5].  
 In order to make this article more helpful to the reader we 
back our descriptions by concrete algorithms and snippets of 
code in a matrix programming language. Matlab is the best 
known matrix programming language and all the code given 
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in this paper will work with this language. We use the free 
Matlab clone, namely Octave which can be freely 
downloaded from [6]. There are many more matrix languages, 
like Mathcad, R, Scilab, Yorick etc., and the code given in 
this paper should work with all these languages after 
introducing minor changes. Therefore, we refer to the 
programming language simply as the “matrix programming 
language”, rather than giving a specific name.  
 The use of matrix languages simplifies all calculations 
involving data analysis enormously (see for example [7]), as 
will be clear from the examples. Very often only a line or two 
of code are required to solve a complex problem.  
 Appendix A gives some basic information on the part of 
the matrix language used in the present paper. Appendix B 
describes the data-gathering procedure.  

 
2. HEART RATE  

AND HEART RATE VARIABILITY  
 Heart beats or contractions are caused by electrical depo-
larization of the heart muscle [8-11]. Electrical depolarization 
of the different parts of heart can be observed on an electro-
cardiogram (ECG). The depolarization of the upper cardiac 
chambers, called atria (respectively right and left atrium) is 
visualized by the P-wave. The Q, R and S waves create 
the QRS complex, which represents the depolarization of 
cardiac lower chambers, known as ventricles (respectively 
right and left ventricle) (Fig. 1). The interval between suc-
cessive heart beats is called RR interval and it is the distance 
between the consecutive QRS complexes, usually measured as 
the distance between the RR waves.  

 

 

Fig. 1. A strip of ECG presenting heart’s electrical activity recorded 
in a healthy person. The P wave shows the depolarization of cardiac 
atria. The QRS complex characterizes depolarization of cardiac 
ventricles. R waves of the QRS complex are always directed upward 
and therefore are usually used for the identification of each heart 
beat and its duration called the RR interval (from one R to the con-
secutive R wave). In this sample there are 4 heart beats and 3 RR  
                           intervals between them  

 
 In healthy people the sinus node is the main rhythm 
generator or the primary pacemaker, with its own intrinsic 
activity of about 90-100 beats per minute [9, 12]. The excita-

tory signals initiated in this node propagate through the con-
ducting system and surrounding tissues to both atria and 
ventricles [11]. Physiologically, the spontaneous depolari-
zation from the primary pacemaker is the fastest. There are, 
however, other pacemakers with their own spontaneous 
depolarizing activity. The secondary and tertiary pacemakers 
are localized below the sinus node and excite much slower 
than the primary one, which acts as a master clock [9, 11, 12]. 
If, for any reason, the sinus node fails to generate the primary 
excitation then secondary or tertiary centers with lower 
pacemaker frequency initiate the main depolarization wave of 
the heart. In healthy heart the main excitatory wave de-
polarizes all potential pacemakers reducing their spontaneous 
depolarizing activity to 0. Thus, the excitatory signals from 
the sinus node prevent the generation of non-sinus beats, i.e. 
supraventricular (from the upper cardiac chambers) or ven-
tricular ones (from the lower cardiac chambers). But some-
times, the supraventricular or ventricular beats appear 
prematurely, i.e. earlier than expected.  
 The momentary heart rate and the duration of the RR 
interval is a consequence of constant interaction between the 
intrinsic activity of the sinus node and the influence of the 
autonomic nervous system, various substances circulating in 
the blood and present in the heart tissues [9, 10]. Breathing 
appears to be the most important factor modulating heart rate 
[9, 10, 13]. It causes heart rate acceleration during inspiration 
and its deceleration during expiration. The changes in blood 
pressure modulated by baroreflex are another example of 
a separate system regulating the heart rate. The control of 
heart rate is modulated by both sympathetic and para-
sympathetic branches of autonomic nervous system as well as 
many other autonomic reflexes (e.g.: chemoreflexes) [10, 13-
15]. All these systems and reflexes are responsible for 
changing of the duration of RR interval from one beat to 
another and this phenomenon is called heart rate variability 
(HRV) [4, 10, 13-15]. It is accepted that the higher HRV, 
the better prognosis in survivors of myocardial infarction or 
patients with heart failure. HRV is reduced in patients with 
diabetes and autonomic dysfunction [4].  
 A number of parameters are used in HRV analysis. Some 
of these parameters describe short-term while other depict 
long-term or total variability [9]. In time-domain analysis, 
simple statistical variables are used for HRV description. 
The standard deviation of all normal RR intervals is one of 
the most popular and widely used descriptor of total HRV. In 
another approach, frequency-domain or spectral analysis of 
time series of RR intervals is performed with Discrete Fourier 
Transformation (usually by FFT) or autoregressive models 
[4]. Derived from spectral HRV analysis, the total power 
represents total HRV, the power of high frequency (HF) 
corresponds to parasympathetic activity while the power of 
low frequency (LF) depends on both sympathetic and para-
sympathetic activity and their balance [4, 15].  
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 However, many nonlinear phenomena are certainly 
involved in the genesis of HRV. It has been speculated that 
the analysis of HRV based on the methods of nonlinear 
dynamics might elicit valuable information for physiological 
interpretation of HRV and for the assessment of the risk of 
sudden death [4]. The analysis of Poincaré plots or sections of 
RR intervals is an emerging method of nonlinear dynamics 
applied in HRV analysis. It appears under different names in 
the literature: scatter plots, first return maps, and Lorenz plots 
being the most prominent terms.  
 Other nonlinear approaches are also used for HRV analy-
sis. A review of these methods may be found in [19]. 
 Independently of the applied method for HRV analysis, 
the proper edition of ECG is always essentials. The analysis 
of HRV is mainly concentrated on heart beats of the sinus 
origin and thus all other beats (supraventricular, ventricular 
and paced in case of implanted artificial pacemakers) should 
be removed. It also happens that the raw data contain arti-
facts. The RR intervals characteristic for incorrect beats are 
usually shorter (eg.: RRi < 300 ms) or longer (RRi > 2000 ms) 
than physiologically acceptable for healthy people. Another 
characteristics of incorrect beats may be a change of more 
than 20% from RRi to RRi.  
 A rhythmic pattern of the heart rate may be destroyed by 
non-sinus beats and artifacts which usually appear too early 
or too late. With the use of different filters most of non-sinus 
beats and artifacts can be removed from the analyzed time 
series with RR intervals. In this study we aimed to evaluate 
the effect of different filtering approaches on the final results 
of HRV analysis with the use of Poincaré plots.  

 

3. POINCARÉ PLOT 
 We will now define the Poincaré plot for a data vector 
x = (x1, x2, ... xN) of length N. First, we define two auxiliary 
vectors:  

  
( )
( )

1, 2 1

2, 3

, ...,

, ..., .

N

N

x x x x

x x x x

+
−

−

=

=
 (1) 

In the medical literature these vectors are more commonly 
referred to as RRin and RRin+1, respectively [1, 3, 16]. 
 The Poincaré plot consists of all the ordered pairs:  

  ( ), , 1 ... 1.i ix x i N+ − = −  (2) 

 This may be realized in the matrix language as  

xp=x; xp(end)=[]; 

xm=x; xm(1)=[]; 

 When this procedure is used for realistic data from a healthy 
person, we obtain a comet-like shape, similar to the one shown 
in Fig. 2. The Poincaré plot shown in this figure corresponds to 
a 4-hour recording of a healthy 23-year-old man. 

Fig. 2. The Poincaré plot of a 4-hour recording of a healthy persons
 
 The Poincaré plot is characterized by a number of 
descriptors, some of which are presented in Fig. 3 [17]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3. Some Poincaré plot descriptors and the PP ellipse – 
5-minute recording (see the explanations in Section 3) 

 

 SD1 and SD2 are two standard Poincaré plot descriptors 
[1, 2]. SD2 is defined as the standard deviation of the projec-
tion of the Poincaré plot on the line of identity (y = x), and 
SD1 is the standard deviation of projection of the PP on 
the line perpendicular to the line of identity (y = −x) [1]. For 
our purposes we may define them as:  

  1 21 Var( ), 2 Var( ),SD x SD x= =  (3) 

where Var(x) is the variance of x, and  

  1 2, .
2 2

x x x xx x
+ − + −− += =  (4) 
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In other words, x1 and x2 correspond to the rotation of x+ and 
x– by θ = π/4.  

  1

2

cos sin
4 4 .

sin cos
4 4

x x
x x

π π

π π

+

−

 −    
=     

     
  

 (5) 

This may be expressed in the matrix language as:  

SD1=std(xp-xm)/sqrt(2); SD2=std(xp+xm)/sqrt(2); 

 If we define SDRR as the square root of the variance of 
the whole time series in the recording (compare Section 2):  

  Var( ),SDRR x=  (6) 

the following approximate relation holds:  

  2 21 1 2 .
2

SDRR SD SD= +  (7) 

The reason for this relation not being exact is the fact, that 
SDRR and SD1, SD2 are calculated from slightly different 
sets of data (the calculation of SD1 and SD2 involves remov-
ing points).  
 It is widely accepted that SD1 reflects the short-term 
variability, and SD2 reflects both short-term and long-term 
variability. An excellent discussion of this issue may be found 
in [1]. 
 It is a common procedure to draw an ellipse with axes 
(SD1, SD2) centered on ( ),x x+ −  – the overbar denotes the 
mean of the vector [1, 2]. In many papers this is called “fitting 
an ellipse” [1] which is something of a misnomer, as no actual 

 
Fig. 4. Various pathological shapes of Poincaré plots – 24-hour recordings of post-MI patients 

with numbers of premature ventricular and supraventricular beats  
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fitting takes place. This problem is known to have lead to 
errors made by researchers trying to actually fit an ellipse to 
an existing  Poincaré plot. In fact the ellipse is only there to 
help the eye and a rectangle with sides (2SD1, 2SD2) might 
do as well.  
 Additionally, we may define a parameter which reflects 
the total variability as measured by the Poincaré plot: 

  1 2s SD SDπ=  (8) 

which is the area of the ellipse [17, 18]. In fact the only 
important point is to multiply SD1 and SD2 – it does not have 
to be the area of an ellipse. 
 The reasons why we believe that S is the total variability 
are given in [17]. This parameter seems to be a better measure 
of total variability than SDRR, as in the case of bigeminy, when 
our data vector would be similar to x = (a, b, a, b, a, b ...) SDRR 
would measure a substantial variability, whereas S would be 
equal to 0, which agrees with the intuitive understanding of 
“variability”.  
 SDRR and S can be calculated in the following way:  

SDRR=std(x); S=pi*SD1*SD2; 

 The shape shown in Fig. 2 seems to be characteristic of 
healthy persons. There are, however, many other shapes, some 
of which have been classified as being characteristic of some 
pathological states ([1] and references therein). A few examples 
of other, pathological shapes may be found in Fig. 4.  
 In the next section we show how some useful information 
can be extracted from such plots by means of proper filtering.  

 
4. FILTERING POINCARÉ PLOTS  

 In this section we show how to correctly remove incorrect 
data from the data vector. Three types of filters shall be 
described, together with their implementation in the matrix 
language. We will also demonstrate how proper filtering 
helps extract useful information from complex Poincaré plots. 

 
4.1. General notes on Poincaré plot filtering  
 Let us consider a data vector similar to the one presented 
in Fig. 5.  

 

Fig. 5. An example data vector with annotated artifacts, ventricular  
 or supraventricular beats (in this figure they are represented by filled
   squares) 

 
 The striped squares correspond to beats which did not 
originate from the sinus node. They may be artifacts, ventri-
cular or supraventricular beats.  

 Very often the data gathered in a study is already anno-
tated by the recording device, which has some built-in algo-
rithms for recognizing incorrect beats. If this is not the case, 
the recognition of these beats may be carried out by special-
ized software. The algorithms used to do this are complex and 
not entirely reliable [4]. The input data for these algorithms is 
the full ECG rather than an RRi vector. 
 If we want to calculate some of the parameters which 
describe the data vector, like for example SDRR or mean RRi, 
we can simply remove the striped squares and use the 
remaining data vector to do this. However, if we used this 
vector to calculate the PP descriptors we would be making an 
error. The reason is illustrated in Figs 6. a-b below. 

 

Fig. 6. The effect of filtering on the Poincaré plot. Figure a) shows 
a Poincaré plot without any filtering, b) is an incorrect Poincaré plot 
after removing artifacts, ventricular and supraventricular beats from 
the original data vector and c) shows the correct procedure for 
removing the offending beats. The filled squares correspond to 
the data removed while preparing the PP. The data vectors have 
been slightly translated in opposite directions, so that now the cor-
responding points are opposite one another, i.e. (1, 2), (4, 5), (5, 6)

 
 The Poincaré plot in Fig. 6 a) has been produced with the 
use of the original data vector, without any filtering and it will 
serve as a reference. In part b) of the figure the Poincaré plot 
has been prepared with the use of the filtered data vector, i.e. 
the artifacts, ventricular and supraventricular beats have been 
removed from the original data vector, and the resulting vector 
has been used to produce the plot. By comparing the result with 
part a) we can see, that it is incorrect as it contains some points 
(namely (2, 4), (6, 8)) which do not correspond to any real PP 
points and are the result of the filtering procedure only.  
 Part c) of the figure demonstrates the correct way of 
filtering the Poincaré plot. First, the Poincaré plot is prepared 
as described in Section 2, and only then are the incorrect 
beats removed from both vectors (x+ and x!), together with 
their counterparts in the other vector, whether the counterpart 
is a correct beat or not. We may lose some information in this 
procedure, but we can be sure that no additional information 
will be generated.  
 We will now describe three simple algorithms of filtering 
Poincaré plots in three cases.  
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4.2. The annotation filter  
 This filter may be used with annotated recordings. Such 
a recording may consist of two columns: in the first one, 
the value of the RRi is given and the second one provides the 
flag identifying the beat. For example in Fig. 7 we can see 
a fragment of a recording in which the second column 
contains flags 0 – for a normal beat, 1 for a ventricular beat, 2 
for a supraventricular beat and 4 for an artifact.  
 

Fig 7. An example of an annotated RRi-recording 
 
 Following the discussion in the previous subsection, we 
have to find the incorrect beats in both vectors (x+ and x-) and 
remove them from the vector in which it was found along 
with its counterpart in the other vector.  
 This can be implemented in the matrix language as 
follows. First we find the indices of the incorrect beats in the 
original data  

L=length(x)−1; indices=find(x(1:L,2)~=0; 

 (for details see Appendix A) and then remove the data from 
both vectors as follows  

indices_p=indices; indices_m=indices!1;  

indices=[indices_p; indices_m]; 

xp(indices)=[]; xm(indices)=[];   

 There is another point to be considered here. If the first 
entry should be an incorrect beat it will lead to an error, 
because we would be trying to remove from x! an entry with 
an index 0, which obviously does not exist. This problem isn't 
very difficult to solve. If a single recording is being consid-
ered, this problem can easily be solved by hand. If a large 
number of recordings is analysed a procedure for detecting an 
incorrect beat in the first position can be easily written.  
 
4.3. The square filter  
 This filter may be used with recordings which are not 
annotated. We call it square because it removes data which 
lie outside the square x± > 300, x± < 2000. The justification for 
the use of this filter was given in Section 2.  
 The actual code in the matrix language is:  
L=length(x)−1;  
indices=find(x(1:L,2)<300 | x(1:L,2)>2000); 

indices_p=indices; indices_m=indices-1;  

indices=[indices_p; indices_m]; 

xp(indices)=[]; xm(indices)=[]; 

  The discussion on the possible error given at the end of 
the previous section applies here, too.  
 
4.4. The quotient filter  
 This filter, again, may be used with data that has not been 
annotated. It is the most aggressive filter, in the sense that it 
usually removes more points than the previous two, but at the 
same time it is the most prone to leave incorrect beats 
unfiltered. The explanation why this filter should be used can 
be found in Section 2.  
 In this filter beats fulfilling any of the following condi-
tions:  

  1 1

1 1

1.2, or 0.8,

1.2, or 0.8,

i i

i i

i i

i i

x x
x x

x x
x x

± ±

± ±
+ +
± ±
+ +
± ±

≥ ≤

≥ ≤

 (9) 

are removed.  
 The code snippet for this filter is:  

L=length(x)−1;  
indices=find(x(1:L-1,2)./x(2:L,2) <.8 | 

x(1:L-1,2)./x(1:L-1,2)> 1.2 | 

x(2:L,2)./x(1:L-1,2)<.8 | 

x(2:L,2)./x(1:L-1,2)>1.2)  

indices_p=indices; indices_m=indices-1;  

indices=[indices_p; indices_m]; 

xp(indices)=[]; xm(indices)=[];  

 It can be easily noticed that if there are a few incorrect 
beats of the same order in succession, some of them will not be 
removed. This is why this filter works best if it is combined with 
any of the two other filters. Additionally, this filter can be run 
several times on a Poincaré plot, and each time more incorrect 
beats will be removed (possibly, also some correct beats will be 
removed in the process). This procedure of multiple application 
of the quotient filter has the effect of stabilizing the recording.  
 Again, the discussion from the end of (4.2) applies.  
 All of these three filters remove hardly any beats from 
a recording of a healthy person. However, if we consider 
a pathological Poincaré plot, the last filter (the quotient filter) 
is the most aggressive one.  

 
5. APPLICATIONS OF FILTERS  

 In this section we will show the result of filtering 
pathological Poincaré plots with the filters described above. 
We will also describe the application of these filters for 
the Poincaré plot decomposition method.  
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5.1. A filtering example  
 In Figure 8a, b we can see a tachogram and a Poincaré 
plot of a survivor of myocardial infarction. (A tachogram is a 
plot of RR intervals against their index in the data vector.) 

This recording has not been filtered in any way. We can see 
that the Poincaré plot is very complex, and the large values 
of the descriptors (SD1 = 60.6 ms, SD2 = 167.2 ms and 
S = 31.8 · 103 ms2) suggest a large HRV.  

Fig. 8a. The tachogram of a non-filtered recording (12 hours) Fig. 8b. The Poincaré plot of a non-filtered recording (12 hours) 
 

Fig. 9a. Tachogram – the same recording as in Fig. 8a after 
annotation filtering 

Fig. 9b. The Poincaré plot – the same recording as in Fig. 8b 
after annotation filtering 

 

Fig. 10a. Tachogram – the same recording as in Fig. 8a after 
square filtering 

Fig. 10b. Poincaré plot – the same recording as in Fig. 8b after 
square filtering 
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Figures 9a, b present the same recording after annotation 
filtering. We can notice that the changes in the tachogram are 
less violent than in Figures 8a, b but are still substantial. This 
may mean that the algorithm used for annotating the 
recording was not totally efficient. The values of the 
descriptors are much smaller than in the previous, unfiltered 
case (SD1 = 24.6 ms, SD2 = 132.9 ms and S = 10.3 · 103 ms2), 
which means that a lot of the variability found in the previous 
case is attributable to artifacts and ventricular and 
supraventricular beats.  
 The next figure (Fig. 10) shows the effect of the square filter 
applied to the same recording. The tachogram does not look very 
different from the unfiltered case, the descriptors are smaller 
(SD1 = 52.8 ms, SD2 = 157.2 ms and S = 26.1 · 103 ms2), but 
two of them are larger than in the case of the annotation filtering.  
 The quotient filter applied to the recording produces 
Fig. 11. It can be seen that the tachogram is not as chaotic as 
in the case of the unfiltered recording or the square filter. 
There are, however, some suspiciously violent jumps in 
the tachogram. The Poincaré plot has lost all but one of 

the isolated islands visible in the previous figures. The de-
scriptors are much smaller (SD1 = 22.1 ms, SD2 = 132.7 ms 
and S = 9.2 · 103 ms2). This means that a great amount of 
the variability visible in the unfiltered recording is attributable 
to the (perhaps non-physiological) beats which fail to pass 
the quotient filter test.  
 In 4.4 it has been mentioned that the quotient filter can be 
run a few times on the same recording. Figure 12 presents 
the result of running the filter twice on the recording which 
we are considering here. The tachogram is now very smooth, 
the Poincaré plot has lost all the isolated islands and the de-
scriptors are now very small (compared to the unfiltered case): 
(SD1 = 19.0 ms, SD2 = 130.6 ms and S = 7.8 ·  103 ms2). For 
reasons given in the Introduction and Section 2 we believe 
that this tachogram and Poincaré plot correspond to the sinus 
node only.  
 In the next section we will see even more clearly that 
the assumption that the filtered recordings correspond to the 
sinus node agrees with the assumption of diminished HRV in 
illness. 

 

Fig. 11a. Tachogram – the same recording as in Fig. 8a after 
quotient filtering 

Fig. 11b. Poincaré plot – the same recording as in Fig. 8b after 
quotient filtering 

 

Fig. 12a. Tachogram – the same recording as in Fig. 8a after 
double quotient filtering 

Fig. 12b. Poincaré plot – the same recording as in Fig. 8b after 
double quotient filtering 
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5.2. Poincaré plot filtering in the decomposition technique  
 The Poincaré plot decomposition [5] is a visual technique 
for assessing the HRV. The reader may want to download the 
movies demonstrating this technique form [20] to better 
understand further explanations.  
 The recording is analyzed with the use of a sliding win-
dow which is 5 minutes long and moves smoothly along 
the tachogram – in the tachogram this window is marked by 
a red area. Every second the sliding window subtends 
a 5-minute long recording, and for each position of the 
window a Poincaré plot is prepared and all the descriptors 
calculated. Each frame of the movie corresponds to a position 
of the sliding window.  
 Movie 1u contains a recording of a healthy person – we 
can observe how the Poincaré plot fans out for large RR inter-
vals and is compressed for small RR intervals. The second 
panel presents the movement of the point (SD1(t), SD2(t)) in 
the (SD1, SD2) space. The movement is mostly vertical. This 
recording is not filtered, and there is no movie for the filtered 
recording, as it looks basically the same.  
 Movie 2u contains a unfiltered recording of a survivor of 
myocardial infarction. We can see that the tachogram and 
the Poincaré plot are similar to what we have seen in the 
previous subsection. The movements of the point in the 
second panel are no longer smooth or mostly vertical.  
 When this recording is filtered with a combination of 
the annotation filter and the quotient filter – in movie 2f – 
the situation is totally different. The variability is much 
smaller than in the unfiltered recording and possibly smaller 
than in the case of the healthy person, which can be noticed 
by observing the instantaneous Poincaré plot, which consists 
of the red points. The movement of the point in the second 
panel is much more confined and spans a smaller area.  
 The next movie, 3u, looks very different. The shape of the 
Poincaré plot is very complex and the (SD1(t), SD2(t)) point 
moves in a very chaotic way. If this recording were to be the 
basis for assessing HRV, the conclusion would have to be that 
the variability is large.  
 However, when this recording is filtered (movie 3f), again 
with a combination of the annotation and quotient filters, we 
can see almost no variability! The Poincaré plot is a small cir-
cular patch which hardly moves and the (SD1(t), SD2(t)) point 
spans a very small area. The person, whose recording can be 
seen in movies 3u and 3f died shortly after the recording.  
 The person whose condition was the worst had the small-
est HRV, but this could only be observed after the proper 
filtering of the recording.  
 

6. CONCLUSIONS  
 In the paper we have introduced the reader to the problem 
of measuring HRV with the use of filtered Poincaré plot. We 
have described the general guidelines for filtering and given 
details of three different filters, namely the annotation filter, 

the square filter and the quotient filter. In Section 5 we have 
shown that the filters extract useful information from 
Poincaré plots, and that the descriptors become good 
measures of HRV only after the application of the filters. 
Indeed, the big values of descriptors indicating large values of 
HRV become small after proper filtering. There are reasons to 
believe, that the filtered recordings contain information on the 
sinus node.  
 Each technique has been illustrated by a snippet of code in 
the matrix language.  
 The Poincaré plot is an incredibly simple technique for 
measuring HRV. Additionally, the filtering procedures pose 
no problem either. If we compare the Poincaré plot and 
the Discrete Fourier Transform we will notice that in some 
respects the PP is superior to the DFT – and filtering is one of 
them. Filtering data for DFT (FFT) is very difficult and in fact 
creates and/or changes the information contained in the 
recording.  
 The Poincaré plot is a new and promising technique of 
HRV analysis. It is so simple, that it can be used by anyone 
with a computer and a basic knowledge of programming 
(preferably in a matrix language). However, any Poincaré plot 
analysis of a real data vector should be preceded by a careful 
look at the data and the application of the suitable filtering 
procedure.  
 
Appendix A: Basics of the matrix language  
 In this Appendix we will briefly describe the techniques 
used in the present paper.  
 x – is a matrix or a vector defined as x=[a,b,c,...],   
 x(i) – is the i-th element of matrix x, treated here as a 
vector, 
  x(i,j) – is the xi,j element of the matrix,  
 x(:,1) – is the first column of the matrix,  
 x(1,:) – is the first row of the matrix,  
 find(x>a) – returns a vector of indices of the elements of 
x which satisfy the condition xi,j > a,  
==, <>, ~, | – are the logical expressions: equals, is 
smaller / greater, not, or, respectively,  
./ – is the element-wise division,  
x([i,j,k,m,n])=[] – removes xi, xj, xk, xm, xn from the data 
vector x.  
 
Appendix B: Data gathering  
 This Appendix describes the data gathering process for 
the datasets used in this paper.  
 The recordings were visually inspected with the use of 
professional Holter ECG recording and analyzing system 
(Zymed 1810, Philips, USA). All necessary corrections of 
beats with their proper identification was done basing on the 
preliminary automatic evaluation and then manually changed 
if necessary in some cases. After the proper identification of 
all heart beats, the collected recordings were exported into an 
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ASCII file containing the duration of all RR intervals with 
their labeling. Number of RR intervals in the analyzed ASCII 
files was in the range of approximately 60,000 to 140,000. 
The following abbreviations were used for the labeling: 0 for 
normal beats of sinus origin, 1 for supraventricular beats, 2 
for ventricular beats and 4 for artifacts. As the sampling fre-
quency of the used recording system is 200 Hz therefore 
the precision of RR interval identification is 5 ms.  
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