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Abstract: We study the properties of time evolution of the 0 0K K−  system in spectral formulation. Within the one-pole model we find 
the exact form of the diagonal matrix elements of the  effective Hamiltonian for this system. It appears that, contrary to the 
Lee-Oehme-Yang (LOY) result, these exact diagonal matrix elements are different if the total system is CPT-invariant but 
CP-noninvariant.  
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1. INTRODUCTION   

 The realistic model of the pair of unstable neutral 
particles (neutral K mesons) is discussed. The model is 
based on the assumed properties of the spectral function 
defining the evolution operator. It is assumed that this 
spectral function describing the mass distribution has 
the Breit-Wigner form. This allows one to express the ma-
trix elements of the evolution operator in terms of the com-
binations of exponential integral functions. Then, these 
matrix elements of the evolution operator are used to 
calculate the matrix elements of the effective Hamiltonian 
governing the evolution of a two-state quantum system 
corresponding to the K K−  mesons and similar systems. 
 The aim of the paper was to find the analytic expression 
for the difference of the diagonal elements of the effective 
Hamiltonian with the use of the exponential integral 
functions. As a result, the relatively complex physical 
model has been reduced to a form which can be immedi-
ately used for computer simulations exploring the behav-
iour of this very important difference with the change in 
time (t), given the numerical values of the parameters 
characterising the system (mass, lifetime etc.). 
 Furthermore, a method for extracting asymptotic values 
of observable parameters (like the difference mentioned 
above) from general, analytic expressions, in the case of 
two quantum objects with very different lifetimes, has been 
developed. 
 The computational methods used are of universal char-
acter and might be used outside the elementary particles. 
As our main interest is the research of the behaviour of the 
exact expressions describing the system, symbolic methods 
were used. Additionally, some of the parts of the system 
are of highly oscillatory nature, so purely numerical 
methods might be inappropriate here. 

 This paper is addressed not only to high energies 
physicists but also to physicists who are searching for 
properties of two or more levels (or particles) systems in 
atomic or molecular physics, etc. The problem of the CPT 
invariance or the CPT noninvariance applies not only in 
the case of neutral mesons but also, for example, in the 
case of electron-positron pairs [1]. For this reason Section 
Preliminaries (based on [2]) appears in the paper. This 
Section familiarizes Readers with the mentioned problem. 
 The computational part was carried out with the use of 
a symbolic package, namely Mathematica, and the func-
tional-objective characteristics of its programming lan-
guage were fully used. The symbolic approach enabled us 
to use both the objects and methods built into Mathematica 
(like the exponential integral functions, the asymptotic 
procedures etc.) as well as define our own objects and sym-
bolic methods used in the calculations (like the effective 
meson vectors with scalar products, norms, the operation of 
the effective Hamiltonian etc.). Whenever we failed to 
come up with a suitable symbolic method, the object was 
wrapped and left intact. 
 This approach has the advantage that all calculations 
are carried out exactly, perhaps leaving some parts une-
valuated and thus avoiding approximations. Mathematica 
gives its user the possibility to generate code in a low-level 
language (C, Fortran), so now, having arrived at the final 
formulae it will be simple to produce efficient and fast, and 
at the same time as exact as possible, numerical programs 
for investigating various neutral mesons on various 
time-scales and in various conditions. 
 The paper is organized as follows. In Sec. 2 we review 
briefly the Lee-Oehme-Yang and other methods of descrip-
tion of neutral K system. Section 3 describes the spectral 
model of time evolution in neutral mesons subspace. In 
Sec. 4 the difference of the diagonal matrix elements of the 
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effective Hamiltonian is calculated. The concluions are 
contained in Sec. 5.  
 

2. PRELIMINARIES 
 Following the LOY approach, a nonhermitian Ham-
iltonian H&  is usually used to study the properties of the 
particle-antiparticle unstable system [3-7] 

  ,
2
iH M≡ − Γ&   (1) 

where 

  ,M M + += Γ = Γ   (2) 

are (2 × 2) matrices acting in a two-dimensional subspace 
H&  of the total state space H . The M-matrix is called the 
mass matrix and Γ  is the decay matrix. Lee, Oehme and 
Yang derived their approximate effective Hamiltonian 

LOYH H& ≡  by adapting the one-dimensional Weisskopf- 
-Wigner (WW) method to the two-dimensional case cor-
responding to the neutral kaon system. 
 Almost all properties of this system can be described by 
solving the Schrödinger-like equation [3-6]  

  ( )0; ; ,i t H t t t
t

ψ ψ∂ = ≥ > −∞
∂ && &   (3) 

(where we have used =  = c = 1 ) with the initial conditions  

  0 0; 1, ; 0,t t t tψ ψ= = < =& && &   (4) 

for 0; t tϕ =
&
 belonging to the subspace of states &H  

( ),H H& ⊂  spanned by, e.g., orthonormal neutral kaons 
states 0K  and 0.K  The solutions of Eq. (3) may be written 
in a matrix form, which may be used to define the time 
evolution operator ( )U t&  acting in subspace &H  

  0; ( ) ; 0 ( ) ,t U t t U tψ ψ ψ= = ≡& && &&   (5) 

where  
  1 2a aψ ≡ +1 2&   (6) 

and 1  denotes particle “1” – in the present case 0K  
whereas 2  corresponds to the antiparticle state for 
particle “1”: 0 ,K  , , 1, 2.jk j kδ= =j k  It is usually 
assumed that the real parts of the diagonal matrix elements 
of H&  namely ( ),ℜ ⋅    

  ( ) ( 1, 2),jj jjh M jℜ ≡ =   (7) 

where  

  ( , 1, 2)jkh H j k= =j k&   (8) 

correspond to the masses of the particle “1” and its 
antiparticle “2” [3-7]. ( )ℑ ⋅  is the imaginary part of jjh  

  ( ) ( 1, 2)ij jjh jℑ ≡ Γ =  (9) 

and jjΓ  are interpreted as the decay widths of the particles. 
According to the standard result of the LOY approach, in 
a CPT invariant system, i.e. when  

  1 ,H H−Θ Θ =   (10) 

(where Θ = CPT, H = H+ is the Hamiltonian of the total 
system under consideration) we have 

  LOY LOY
11 22 .h h=   (11) 

 The universal properties of the unstable particle- 
-antiparticle subsystem described by the H fulfilling 
the condition (10), may be investigated by using the matrix 
elements of the exact ,U&  instead of the approximate one 
used in the LOY theory. The exact U&  can be written as 
follows  

  ( ) ( ) ,U t PU t P=&   (12) 

where 

  ,P ≡ +1 1 2 2   (13) 

and ( )U t  is the exact evolution operator acting in the whole 
state space. This operator is the solution of the Schrödinger 
equation 

  ( ) ( ) , (0) .i U t HU t U I
t

φ φ∂ = =
∂

  (14) 

I is the unit operator in the H  space and 0; 0tφ φ≡ = ∈H  
is the initial state of the system.   
 In the remaining part of the paper we will be using the 
following matrix representation of the evolution operator 

  ( ) ,U t  
≡  
 

A(t) 0
0 0&   (15) 

where 0 denotes the zero submatrices of the suitable 
dimension, and the A(t) is a (2 × 2) matrix acting in H&  

  11 12

21 22

( ) ( )
( ) ,

( ) ( )
A t A t

A t
A t A t

 
=  
 

  (16) 

where 

  ( )( ) ( ) ( ) , 1,2 .jkA t U t U t j k= ≡ =j k j k&   (17) 

Assuming that the property (10) holds and using the 
following definitions  

  , ,i ie eθ θ− −Θ ≡ Θ ≡1 2 2 1   (18) 

it can be shown that  

  11 22( ) ( ).A t A t=   (19) 
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 A very important relation between the amplitudes 12 ( )A t  
and 21( )A t follows from the famous Khalfin Theorem [8-10] 

  12

21

( )
( ) const 1.

( )
A t

r t r r
A t

≡ = ≡ ⇒ =   (20) 

General conclusions concerning the properties of the ma-
trix elements of H&  can be drawn by analyzing the follow-
ing identity [2, 5] 

  [ ] 1( )( ) ( ) .tH t i t
t

−∂≡
∂
A A&   (21) 

 Using Eq. (21) we can easily find the general formulae 
for the diagonal matrix elements ,jjh  of ( )H t&  and next 
assuming (10) and using relation (19) which follows from 
our earlier assumptions, we get 

  

11 22

21 12
12 21

( ) ( )

( ) ( )( ) ( ) .
det ( )

h t h t

A t A ti A t A t
t t t

− =

∂ ∂ = − ∂ ∂ A

  (22) 

In [2] it was shown, by using relation (22), that this result 
means that in the considered case (with CPT conserved) for 

0t>  we get the following theorem 

  12
11 22

21

( )
( ) ( ) 0 const ( 0).

( )
A t

h t h t t
A t

− = ⇔ = >   (23) 

Thus, for 0t>  the problem under study is reduced to 
the Khalfin Theorem (see relation (20)) [2].   
 Having noticed this, let us now turn our attention to 
the conclusions following from Khalfin’s Theorem. CP 
noninvariance requires that 1r ≠  [3-6, 8, 10, 12, 13]. This 
means that in this case the following condition must be 
fulfilled: ( ) const.r r t= ≠  Consequently, if in the consid-
ered system property (10) holds, but at the same time  

  [ ], 0H ≠CP   (24) 

and the unstable states “1” i “2” are connected by (18), then 
in this system for 0t>  [2] 

  11 22( ) ( ) 0.h t h t− ≠   (25) 

So, in the exact quantum theory the difference 11 22( ( ) ( ))h t h t−  
cannot be equal to zero with CPT conserved and CP 
violated.   

3. A MODEL: ONE POLE APPROXIMATION  
 While describing the two and three pion decay we are 
mostly interested in the SK  and LK  superposition of 

0K  and 0 .K  These states correspond to the physical 
SK  and LK  neutral kaon states [13, 14] 

  0 0 0 0, .S LK p K q K K p K q K= + = −   (26) 

Using the spectral formalism we can write an unstable state 
( )tλ  as  

  ( ) ( ) ( ),
q

t q t qλλ ω=∑   (27) 

where ( ) ,itHq t e q−=  vectors q  form a complete set 
of eigenvectors of the hermitian, quantum-mechanical 
Hamiltonian H and ( ) .q qλω λ=  If the continuous 
eigenvalue is denoted by m, we can define the survival 
amplitude ( )A t  (or the transition amplitude in the case 

0 0 )K K↔  of ) in the following way: 

  
( )

( ) ( ),imt

Spec H

A t dm e mρ−= ∫   (28) 

where the integral extends over the whole spectrum of the 
Hamiltonian and density ( )mρ  is defined as follows  

  2( ) ( ) ,m mλρ ω=   (29) 

where ( ) .m mλω λ=  
 In accordance with formula (27) the unstable  states KS 
and KL may now be written as a superposition of the 
eigenkets 

  ,
0

( ) ( ) ;S S
a

K dm m mα αω φ
∞

= ∑∫   (30) 

  ,
0

( ) ( ) .L LK dm m mβ β
β

ω φ
∞

∑∫   (31) 

 The Breit-Wigner ansatz [15] 

  

( )
2

2
2

0

1( ) ( )
2

4

BW m m
m m

ρ ω
π
Γ= ≡

Γ− +
  (32) 

leads to the well known exponential decay law which 
follows from the survival amplitude  

  0

1
2( ) ( ) .

tim timt
BW BWA t dm e m e eρ

∞ − Γ−−

−∞

= =∫   (33) 

(Note that the existence of the ground state induces non- 
-exponential corrections to the decay law and to the sur-
vival amplitude (33) – see [13]). It is therefore reasonable 
to assume a suitable form for ,S βω  and , .L βω  More specifi-
cally, we write [13] 

  

( )

( )

,
,

,
,

( ) ,
2

2

( ) ,
2

2

S S
S

S
S

L LL
L

L
L

A Ksm
m m i

A K
m

m m i

β
β

β
β

β
ω

π

β
ω

π

→Γ=
Γ

− +

→Γ
=

Γ− +

  (34) 
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where ,SA β  and ,LA β  are decay (transition) amplitudes, 
and thus 

  
( )( )

( ) ( )

2
,

, 2
2

( ) ,
2

4

x xx
x

x
x

A K
m

m m

β
β

β
ρ

π
→Γ

=
Γ

− +

  (35) 

where x = L, S.   
 In the one-pole approximation (34) 0 0 ( )

K K
A t  can be 

conveniently written as 

0 0 0 0

2 2
0 0

2 2
0 0

( ) ( )

1
2 1 1

.
1 1

S

S

L

L

S S
S

L L
L

m

m

K K K K

i ty i ty
im t

i ty i ty
im t

A t A t

e ee dy dy
y y

e ee dy dy
y y

γ

γ

γ γ

γ γ

π

−

−

∞− −
−

∞− −
−

= =

  
    = − − + +

 + +    

 
 
 + − +
 + +
 
 

∫ ∫

∫ ∫

 (36) 

Collecting only exponential terms in (36) one obtains an 
expression analogous to the WW approximation [13]  

  ( )
0 0 0 0

0 0

( ) ( )
1 ( ).
2

S S L L

K K K K

im t t im t t
K K

A t A t

e e e e N tγ γ− − − −

= =

= + +
  (37) 

Here 0 0 ( )
K K

N t  denotes all non-oscillatory terms contained  
in an exponential integral function Ei appearing in the inte-
gral (36). 
 

4. DIAGONAL MATRIX ELEMENTS  
OF THE EFFECTIVE HAMILTONIAN 

 Using the decomposition of type (37) and the one-pole 
ansatz (34), we find the difference (25), which is now for-
mulated for the 0 0K K−  system. Here it has the following 
form: 

  11 22
( )( ) ( ) ,
( )

X th t h t
Y t

− =   (38) 

where 

  
0 0 0 0

0 0 0 0

( ) ( )
( ) ( ) ( )K K K K

K K K K
A t A t

X t i A t A t
t t

∂ ∂ 
= − ∂ ∂ 

  (39) 

and 

  0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ).K K K K K K K KY t A t A t A t A t= −   (40) 

 Using the above mentioned spectral formulae in the one-
pole approximation (34) we get 0 0 ( )

K K
A t  and 0 0 ( )

K K
A t  

  

0 0

0 0

*

1 1( )

2 1

2 ( ),

S S

L L

im t t
K K

S L im t t
S I I I

S

S L
L I I I K K

L

A t e e
p q

i C D F e e

i C D F N t

γ

γ

π
π

γ γ
γ

γ

γ γ
γ

γ

− −

− −

 +  +=  8�  

      ′ ′+ − − − + − +       

       ′ ′+ − + +       

(41) 

where the expression 0 0 ( )
K K

N t is non-oscillatory terms con-
taining the exponential integral function Ei and it has 
following form 

( )

( )

0 0 *

1( ) 1

12

1

12

S S

L L

S S

im t t
i S SK K

S L I I I
S

im t t
i L L

S L I i i
L

im t t

N t e e E t im t
ip q

iC D F

e e E t im t

iC D F

e e E

γ

γ

γ

γ
π

γ γ
γ

γ

γ γ
γ

− −

− −

−

  = + +  8� 

    ′ ′+ − + − +        

+ + − +

    ′ ′+ + − + +        

+ ( )

( )

(42)1

12

1

12

L L

i S S

S L I i i
S

im t t
i L L

S L I I I
L

t im t

iC D F

e e E t im t

iC D F

γ

γ

γ γ
γ

γ

γ γ
γ

−

− + +
    ′ ′+ + − + +        

+ − + − +

      ′ ′+ + −           
and  

  

0 0
1( ) 1

*

2

1

S S

L L

im t t
K K

S L
S I I I

S

im t t

A t e e
pq

i C D F

e e

γ

γ

π
π

γ γ
γ

γ

− −

− −

 +  = + 8�  
  ′ ′ + − + +   


+ − +
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0 0

2

( ),

S L
L I I I

L

K K

i C D F

N t

γ γ
γ

γ

    ′ ′ + − + − +    
+

 (43) 

where 0 0 ( )
K K

N t  denotes all non-oscillatory terms of the 
form similar to (42) and , ' , 'I I IC D F  are defined in [13]. 
 Using the expression for the derivative of Ei we can 
find the derivatives which will be necessary for the 
following calculations 0 0 ( )K KA t

t
∂

∂  and 0 0 ( ) :K KA t
t

∂
∂  

 

0 0

0 0

*

( ) 1

2

2

( )

S S

L L

im t tK K
S S

S L S I I I

im t t
L L

S L L I I I

K K

A t
e e im

t p q

i C D F

e e i m

i C D F

N t

γ

γ

π γ
π

γ γ γ

γ

γ γ γ

∆

− −

− −

 ∂ +  = − − + ∂ 8�  
  ′ ′ + − + +   


+ − +

    ′ ′+ − + − +    

+

  (44) 

where 0 0 ( )
K K

N t∆  is defined as follows 

( )

( )

0 0

(45)

1( )
*

2

2

S S

L L

S S

im t t
i S S SK K

S S L S I I I

im t t
i L L L L

S L L I I I

im t t
i S

N t e e E t im t im
ip q

i C D F

e e E t im t im

i C D F

e e E t im

γ

γ

γ

γ
π

γ γ γ γ

γ γ

γ γ γ

γ

∆ − −

− −

−

  = + − +  8� 
  ′ ′− + − + +    

+ + − +

  ′ ′+ − + − +    

+ − +( )

( )

2

2 .

L L

S S S

S L S I I I

im t t
i L L L L

S L L I I I

t im

i C D F

e e E t im t im

i C D F

γ

γ

γ γ γ

γ γ

γ γ γ

−

 − +

  ′ ′+ − − + +    

+ − + − − +

    ′ ′+ + −     

 

and 

  

0 0

0 0

*

( ) 1

2

2

( ),

S S

L L

im t tK K
S S

S L S I I I

im t t
L L

S L L I i I

K K

A t
e e im

t p q

i C D F

e e i m

i C D F

N t

γ

γ

π γ
π

γ γ γ

γ

γ γ γ

∆

− −

− −

 ∂ +  = − − + ∂ 8�  
  ′ ′ + − + − +   


+ − +

    ′ ′+ − + +    

+

  (46) 

where analogous to (45) 0 0 ( )K KN t∆  denotes all non- 
-oscillatory terms. The correctness of expressions (41)-(46) 
was checked using Mathematica. 
 The states LK  and SK  are superpositions of 0K   
and 0K . The lifetimes of particles LK  and SK  may be 
denoted by Lτ  and ,Sτ  respectively, 81 5.183 10 s

LL γτ −= = ⋅  
being much longer than 101 0.8923 10 s.

SS γτ −= = ⋅  
 Below we calculate the difference (38) for Lt τ∼  

  ( ) ( )
( )11 22

~
~ ( ~ ) .

~
L

L L
L

X t
h t h t

Y t
τ

τ τ
τ

− =   (47) 

If we only  consider the long living states LK  we may 
drop all the terms containing S

L

t
te γ

τ
−

∼  as they are 
negligible in comparison with elements involving the factor 

.L
L

t
te γ

τ
−

∼  We also drop all the non-oscillatory terms 
0 0 ( ),

K K
N t  0 0 ( ),

K K
N t  0 0 ( )

K K
N t  present in 0 0 ( ),

K K
A t  

0 0 ( )
K K

A t  and 0 0 ( ),
K K

A t  that is in integrals (36), (41) and 
(43), because they are extremally small in the region of 
time Lt τ∼  [13, 16, 17]. Similarly, because of the proper-
ties of the exponential integral function Ei, we can drop 
terms like 0 0K K

N∆  and 0 0K K
N∆ present in 0 0K KA

t
∂

∂  (44) and 
0 0K KA
t

∂
∂  (46). This conclusion follows from the asymptotic 

properties of the exponential integral function Ei (see 
formulae (53) in Appendix A) and the fact that 0 0 ,

K K
N∆  

0 0K K
N∆  contain only expressions proportional to Ei. 

Simply, from (53) it follows that terms of type ( )x
ie E x−  

are negligible in comparison with xe−  for x →∞  and 
Re 0.x>  
 We may now calculate the products 0 0 0 0( ) ( ),

K K K K
A t A t  

0 0 0 0( ) ( ),
K K K K

A t A t  0 0

0 0( ) ( ),K KA
t K K

t A t∂
∂  0 0

0 0( ) ( ),K KA
t K K

t A t∂
∂  which, 

after using the above mentioned properties of 0 0 ( ),
K K

N t  
0 0 ( )

K K
N t∆  and performing some algebraic transforma-

tions, leads to the following form of the difference (47) 

 
2

11 22 2

2
( ) ( ~ ) 0,

2 1
S L

L L
Zh t h t
W

π γ γ
τ τ

π π

 
− = ⋅ ≠  + + 

∼   (48) 

where 



J. Jankiewicz 36

  

2
2 2

2

2 2 2

2 14 1
4

14 4

4 0

S L I I I I I
L

I I I

Z p q

C D F D F

iC D F

π π
π

γ γ
γ

+ += − +


  
′ ′ ′ ′+ + − − + +    

 
′ ′+ − ≠ 

 

  (49) 

 

  

2

4 0

I L I I

L
I L I I

L

W C m D F

m
i C D Fγ

γ

 
′ ′= − + − + 

 

  
′ ′+ − + − + ≠  

   

 (50) 

 

5. FINAL REMARKS 

 Our results presented in the present paper have shown 
that in a CPT invariant and CP noninvariant system in 
the case of the exactly solvable one-pole model, the 
diagonal matrix elements do not have to be equal. In 
the general case the diagonal elements depend on time and 
their difference, for example at ,Lt τ∼  is different from 
zero. Z and W in (48) are different from zero, so the dif-
ference 11 22( ( ) ( )) 0.

Lth t h t τ− ≠∼  From this observation a 
conclusion of major importance can be drawn, namely that 
the measurement of the mass difference 00( )KKm m−  
should not be used while designing CPT invariance tests. 
This runs counter to the general conclusions following 
from the Lee, Oehme and Yang theory.   
 A detailed analysis of ( ), ( , 1,2)jkh t j k =  shows that 
the non-oscillatory elements ( ), ( )N t N tα β α β∆, ,  (where 

0 0, )K Kα β, =  is the source of the non-zero difference 
11 22( ( ) ( ))h t h t−  in the model considered. It is not difficult 

to verify that dropping all the terms of ( ), ( )N t N tα β α β∆, ,  
type in the formula for 11 22( ( ) ( ))h t h t−  gives 

osc osc
11 22( ( ) ( )) 0,h t h t− =  where osc ( ), ( 1, 2),jjh t j =  stands for 
( )jjh t  without the non-oscillatory terms.   

 The result 11 22( ( ) ( )) 0h t h t− ≠  seems to be very 
important as it has been obtained within the exactly 
solvable one-pole model based on the Breit-Wigner ansatz, 
i.e. the same model as used by Lee, Oehme and Yang.   
 The next future step is to search for properties of 

11 22( ( ) ( ))h t h t−  for time varying from 0t =  to .Lt τ�  
This problem one can solve using Mathematica or other 
computer programs.   
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Appendix A 
 This appendix contains the relevant properties of 
the exponential integral function Ei used in this paper.   
 The exponential integral function Ei is defined in 
the following way [13, 16] 

  
0

( ) , 0, 0.
xt

xy
i

eE xy e dt y x
y t

∞∞ −
±± = ± ℜ > >∫ ∓

  (51) 

We can use the very convenient asymptotic properties of Ei 
given in [17] 

  

(0) ,
( ) ,
( ) 0,
( ) ,
( ) .

i

i

i

i

i

E
E
E
E i i
E i i

π
π

= −∞
∞ = ∞
−∞ =
∞ =
− ∞ = −

  (52) 

Ei (x) has following asymptotical expressions for x →∞  
(see formulae 5.1.51 in [17]) 

 2
1 2! 3( ) 1 ... , arg .

2

x

i
eE x x
x x x

π
−    − + − <   

   
∼  (53) 

These properties of Ei have been used to obtain the final 
result (48)-(50). 
 In our calculations we have also used the formula for 
the derivative of Ei. Its final, general form is given below 

  ( ) 1 .xyidE xy
e

dx x
±±

=   (54) 

 
References 
[1] H. Dehmelt, R. Mittleman, R. S. Van Dyck, Jr., P. Schwin-

berg, Phys. Rev. Lett. 83, 4694 (1999).  
[2] K. Urbanowski, Phys. Lett., B 540, 89 (2002).  
[3] T. D. Lee, R. Oehme, C. N. Yang, Phys. Rev., 106, 340 

(1957).  
[4] T. D. Lee, C. S. Wu, Annu. Rev. Nucl. Sci., 16, 471 (1966); 

M. K. Gaillard, M. Nicolic (Eds.), Weak Interaction, INPN 
et de Physique des Particules, Paris, 1977, Ch. 5, Appendix 
A; S. M. Bilenkij, in: Particles and Nucleus, Vol. 1. (1), 
1970, p. 227, [in Russian].  

[5] L. P. Horwitz, J. P. Marchand, Helv. Phys. Acta, 42, 801 
(1969).  

[6] J. W. Cronin, Acta Phys. Polon., B 15, 419 (1984); V. V. Bar-
min et al., Nucl. Phys., B 247, 428 (1984); L. Lavoura, 
Ann. Phys. (N.Y.), 207, 428 (1991); C. Buchanan et al., 
Phys. Rev., D 45, 4088 (1992); C. O. Dib, R. D. Peccei, 
Phys. Rev., D 46, 2265 (1992); M. Zrałek, Acta Phys. 
Polon., B 29, 3925 (1998); M. Nowakowski, Mod. Phys. 
Lett. A 17, 2039 (2002).  

[7] K. Urbanowski, J. Piskorski, Found. Phys., 30, 839 (2000), 
physics/9803030.  

[8] L. A. Khalfin, Preprints of the University of Texas at 
Austin: New Results on the CP-violation problem (Report 
DOE-ER40200-211, February 1990); L. A. Khalfin, A new 
CP-violation effect and new possibility for investigation of 

( )0 0 0 0, ,S LK K K K  decay modes (Report DOE-ER40200-247, 
Frebruary 1991).  

[9] P. K. Kabir, A. Pilaftsis, Phys. Rev., A 53, 66 (1996). 



Properties of the effective Hamiltonian for the system of neutral kaons  37

[10] L. A. Khalfin, Found. Phys., 27, 1549 (1997), and refer-
ences one can find therein.  

[11] O. Nachtmann, Elementary Particle Physics, Springer 
Verlag, Berlin 1990.  

[12] K. Hagiwara et al., Review of Particle Physics, Physical 
Review D 66, Part 1, No 1--I, 010001 (2002).  

[13] M. Nowakowski, Time Evolution of 0 0K K− System in 
Spectral Formulation, SIS-Pubblicazioni, LNF-96/004(P); 
M. Nowakowski, Int. J. Mod. Phys., A 14, 589 (1999) .  

[14]  P. K. Kabir, The CP Puzzle, Academic Press, London 
1968.  

[15] A. Bohm, Quantum Mechanics: Foundations and Applica-
tions, Springer Verlag, Berlin 1986. 

[16] I. S. Gradshteyn, I. M. Ryzhik, Tables of Integrals, Series 
and Products, 4th edition, Academic Press, London 1965. 

[17] M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions with Formulas, Graphs, and Mathematical 
Tables, National Bureau of Standards Applied Mathematics 
Series 55, Issued June 1964 Tenth Printing, December 
1972, with corrections. 

 

  
 

 
 
 

JUSTYNA JANKIEWICZ studied physics and received the master’s degree from the Pedagogical University, 
Zielona Góra, Poland. Since 1999, she has been with the Theory of Fundamental Interactions Department, 
Institute of Physics, University of Zielona Góra, where she is currently an Assistant. Her research interests 
focus on the properties of time evolution of unstable neutral particles (neutral K mesons). 

 
 
 

 

                                                 
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 11(1),  31-17 (2005) 




