
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 11(1), 11-20 (2005)

DNA computing

Piotr Formanowicz

Institute of Computing Science, Poznań University of Technology
Piotrowo 3A, 60-965 Poznań, Poland

Institute of Bioorganic Chemistry, Polish Academy of Sciences
Noskowskiego 12/14, 61-704 Poznań, Poland

(Rec. 20 May 2004)

Abstract: DNA computing is an alternative method of performing computations. It is based on the observation that in general it is
possible to design a series of biochemical experiments involving DNA molecules which is equivalent to processing information encoded
in these molecules. In classical computing devices electronic logic gates are elements which allow for storing and transforming informa-
tion. Designing of an appropriate sequence or a net of “store” and “transform” operations (in a sense of building a device or writing
a program) is equivalent to preparing some computations. In DNA computing the situation is analogous. The main difference is the type
of computing devices, since in this new method of computing instead of electronic gates DNA molecules are used for storing and
transforming information. From this follows that the set of basic operations is different in comparison to electronic devices but the
results of using them may be similar. Moreover, the inherent massive parallelism of DNA computing may lead to methods solving some
intractable computational problems. In this paper basic principles of DNA computing are described and examples of DNA based
algorithms solving some combinatorial problems are presented.
Key words: DNA molecules, complementarity rule, combinatorial problems, algorithms, computational complexity

1. INTRODUCTION

 The first person who spoke about the possibility of
performing computations at the molecular level was
probably Richard Feynman. His ideas had to wait over
twenty years to be implemented. They evolved in two
directions one of them being quantum computing and
the other DNA computing. The latter one has been initial-
ized by Leonard Adleman who solved the well-known hard
combinatorial problem of finding Hamiltonian path be-
tween two vertices in a directed graph using DNA
molecules [1]. His seminal paper influenced many re-
searchers who realized that DNA molecules in principle
may serve as new computing devices. Adleman has
founded a new way of thinking about computations since in
DNA computing some new paradigms are needed. One of
them is a real massive parallelism where a huge number of
encoding strings are processed at the same time. Shortly
after the publication of Adleman's paper DNA based algo-
rithms have been proposed for many classical hard
combinatorial problems (cf. [8, 11]).
 Nowadays the research effort in the area of DNA
computing concentrates on four main problems: designing
algorithms for some known combinatorial problems, de-
signing new basic operations of “DNA computers” (they are
some biochemical procedures whose results may be in-
terpreted as results of some computations), developing new
ways of encoding information in DNA molecules and reduc-
tion of errors in DNA based computations (cf. [9, 7, 10, 14]).

 In this paper basic principles of DNA computing are
presented and some exemplary algorithms are discussed.
The organization of the paper is as follows. In Section 2
the main ideas of DNA computing are presented. In Section
3 the first DNA based algorithm, i.e. the one proposed by
Adleman is described. In Section 4 a sticker model of DNA
computing being one of the standard approaches to
performing computations using DNA molecules is dis-
cussed. In Section 5 two algorithms for solving some
problems of scheduling theory are presented and some
extensions of them are also considered. The paper ends
with conclusions in Section 6.

2. FOUNDATIONS OF DNA COMPUTING

2.1. The general idea

 DNA based algorithms are composed of some basic
operations, analogously to their classical counterparts. In
this section the general idea of DNA computing will be
briefly presented.
 As it is easily to guess the nature of DNA molecules is
crucial for DNA computing. In particular, the structure of
these molecules, discovered by Watson and Crick [16], is
fundamental for the possibility of using them for encoding
and processing information. DNA molecules are composed
of two strands, each of them being a sequence of nucleo-
tides which are of four types denoted by A, C, G, T. From
computer science point of view a DNA strand is a word

user
Tekst maszynowy
CMST 11(1) 11-20 (2005)

user
Tekst maszynowy
DOI:10.12921/cmst.2005.11.01.11-20

user
Tekst maszynowy

user
Tekst maszynowy

P. Formanowicz

12

over alphabet ΣDNA = {A, C, G, T}. One of the most important
properties of nucleotides is their ability to join by hydrogen
bonds. This property makes possible an existence of double
stranded DNA molecules. To be more precise, within one
DNA strand nucleotides are joined by strong phospho-
diester bonds. But additionally, every nucleotide A from
one strand may be joined with nucleotide T from another
strand by two hydrogen bonds and C may be joined with G
by three hydrogen bonds (this rule is called Watson-Crick
complementarity and A-T and C-G are pairs of complemen-
tary nucleotides). These bonds are weaker than the phos-
phodiester ones and they allow for forming the double
stranded DNA molecules. For example, if there is a single
stranded molecule 5'-TTGCATTAACGAC-3' it is possible that
another molecule 3'-AACGTAATTGCTG-5' will hybridize to it, i.e.
it will form a duplex:

5'-TTGCATTAACGAC-3'
3'-AACGTAATTGCTG-5'

(Note, that in the above example the ends of the strands are
denoted by 5' and 3'. In fact, DNA strands have orientation
and by convention the left end of the molecule is denoted by
5' and the right one by 3'. In the example 3'-AACGTAATTGCTG-5' is
a sequence complementary to 5'-TTGCATTAACGAC-3' ! such a se-
quence has an opposite direction and at each position of the
duplex nucleotides are complementary to each other.)
 In all DNA based algorithms Watson-Crick comple-
mentarity allows for creating solutions encoded in double
stranded DNA molecules composed of single stranded ones
used for encoding a problem instance.
 The idea of DNA computing is similar (to some extent)
to the non-deterministic Turing machine. Indeed, in many
DNA based algorithms at the beginning there are created
DNA sequences encoding all feasible (not necessarily
optimal) solutions to a given problem and a lot of other
sequences which do not encode any feasible solutions. In
the next steps the algorithm eliminates from this input set
of sequences those which are not solutions to the consid-
ered problem and also those ones which do not encode
optimal solutions. This elimination is performed succes-
sively and the power of DNA computers lies in their
massive parallelism ! (almost) all encoding sequences are
processed simultaneously. At the end of the computations
in the set of DNA molecules there remain only those which
encode the optimal solution.
 The elimination of “bad” sequences is usually done in
such a way that the algorithm checks successively if the
sequences posses some properties necessary for every
string which potentially could encode the problem solution.
If they do not have these properties, they are eliminated
from the set.

2.2. Basic operations
 Hence, the basic operations of DNA algorithms are
usually designed for selecting sequences which satisfy

some particular conditions. On the other hand, there may
be different sets of such basic operations. In fact, any
biochemical procedure which may be interpreted as a trans-
formation (or storing) information encoded in DNA mole-
cules may be treated as a basic operation of DNA based
algorithms. One of the possible set of such operations is the
following [12]:

MERGE ! given two test tubes N1 and N2 create a new tube
N containing all strands from N1 and N2.

AMPLIFY ! given tube N create a copy of them.

DETECT ! given tube N return true if N contains at least
one DNA strand, otherwise return false.

SEPARATE ! given tube N and word w over alphabet ΣDNA
create two tubes +(N, w) and !(N, w), where +(N, w)
consists of all strands from N containing w as a substring
and !(N, w) consists of the remaining strands.

LENGTH-SEPARATE ! given tube N and positive integer n
create tube (N, ≤ n) containing all strands from N which are
of length n or less.

POSITION-SEPARATE ! given tube N and word w over
alphabet ΣDNA create tube B(N, w) containing all strands
from N which have w as a prefix and tube E(N, w) contain-
ing all strands from N which have w as a suffix.

 Each of the above operations is a result of some stan-
dard biochemical procedure.

2.3. Encoding of instances
 One of the fundamental differences between classical
and DNA computing is a very close relationship between
the algorithm and the molecules encoding the problem
instance in the case of molecular computations.
 In electronic computers the input data are stored in
standard memory or processor registers and the program-
mer must not take care of their structure. (This is true for
most cases. Some exceptions may take place in the case of
programs written in low level languages. However, also in
this case the situation is relatively simple since the registers
have “uniform” structure, i.e. the same for all programs.)
 While designing algorithms which will be implemented
on a classical computer one also need not consider the
structure of the registers for storing problem data. (Obviously,
also in this case there may be some exceptions, especially
when some non-standard computer architectures are used.
But again, the architecture is the same for all algorithms.)
 The situation is completely different in the case of DNA
computing. First, there is no clear distinction between
an algorithm and a program. Second, for each problem its
own encoding scheme must be developed, which is very
closely connected with the algorithm.
 The reason is a lack of some standard architecture
of the “DNA computer”. Indeed, in some sense, for each

DNA computing

13

problem being solved by DNA molecules a new “hardware
architecture” is developed.
 So, the designing of DNA molecules for encoding
problem instances is an important part of the process of
algorithms developing and usually these two issues cannot
be separated.
 The molecules have to be designed in such a way that
when poured into one test tube in a certain physical condi-
tions they will create double stranded DNA molecules
encoding potential solutions to the considered problem.

2.4. An example
 The general idea of DNA computing may be illustrated
by the following example. Let us consider a hypothetical
combinatorial problem where certain permutation of some
elements is looked for. For the sake of simplicity let us
assume that the problem instance consists of only four
elements x, y, w and z and let the optimal solution be xwzy.
One of the possible way of encoding the instance in DNA
molecules is as follows. To the elements of the instance
there are assigned the following oligonucleotides:

x : 5'-ACCGATTA-3', y : 5'-GTACCATT-3', w : 5'-TGAACCTA-3',
z : 5'-AATTCGCG-3'

 This set of oligonucleotides is not sufficient for the above
mentioned process of forming DNA duplexes being potential
solutions to the problem. There have to be added some ad-
ditional oligonucleotides which would be able to hybridize to
right half of some of the oligonucleotides shown above and
to left half of some other. These oligonucleotides will bind
consecutive oligonucleotides in a double stranded DNA
molecule encoding potential solution.
 In the presented example such “binding” oligonucleo-
tides should be designed for every ordered pair of the mole-
cules encoding the instance. They should be as follows:

x ! y: 3'-TAATCATG-5', x ! w: 3'-TAATACTT-5', x ! z: 3'-TAATTTAA-5',
y ! x: 3'-GTAATGGC-5', y ! w: 3'-GTAAACTT-5', y ! z: 3'-GTAATTAA-5',
w ! x: 3'-GGATTGGC-5', w ! y: 3'-GGATCATG-5', w ! z: 3'-GGATTTAA-5',
z ! x: 3'-GCGCTGGC-5', z ! y: 3'-GCGCCATG-5', z ! w: 3'-GCGCACTT-5'

 When many copies of all these oligonucleotides are
poured into test tube they will form all duplexes according
to the complementarity rule. The complexes will be of
various lengths, i.e. they will be composed of various
numbers of oligonucleotides. Some of them may be as
follows (in the parentheses there are indicated sequences of
the instance elements which correspond to the created
molecules):

 It should be noted that in the real biochemical experi-
ment much more various duplexes would be created but
only one of these many types of the molecules would
encode the solution to the problem.
 The formation of the duplexes is the first step of
the DNA based algorithm. As was mentioned earlier, the
next steps should be designed to eliminate from this huge
variety of molecules those ones which do not encode the
problem solution. This is usually done successively by
eliminating molecules which do not have some properties
necessary for every string encoding a solution of the con-
sidered problem.
 In the example some initial steps of the algorithm
should eliminate the molecules which are composed of less
than four oligonucleotides, because they cannot encode any
permutation of the instance elements. Next, the molecules
composed of more than four oligonucleotides also should
be removed, since they consist at least one repetition of
some of the elements. Moreover, there has to be also
a possibility of detection and removal of the molecules
encoding solutions not maximizing (or minimizing) the
value of the criterion function (not defined in this simple
example). This issue is usually strongly problem-dependent
and will be discussed in Section 5.

3. ADLEMAN’S ALGORITHM

 In this section the first DNA based algorithm, i.e.
the one proposed by Adleman [1] will be described. As has
been mentioned earlier, Adleman solved an instance of
a problem of finding a Hamiltonian path between two
vertices in a directed graph. The problem is NP-complete in
the strong sense and is formulated as follows [5]:

INSTANCE: Directed graph G = (V, A), two distinguished
vertices vs, vt ∈ V.

ANSWER: YES, if G contains a Hamiltonian path starting in
vertex vs and ending in vertex vt, otherwise NO.

 The algorithm proposed by Adleman consists of the
following steps [1]:
1. Create set S of all paths in G.
2. Remove from set S those paths which do not start in vs

and do not end in vt.
3. Remove from S paths which consists of less or more

than |V | vertices.
4. Remove from S those paths that traverse some vertex

more than once.

P. Formanowicz

14

5. If set S is not empty, then the answer is YES, otherwise
the answer is NO.

 The instance of the problem solved by Adleman
consisted of only seven vertices and obviously every
electronic computer is able to easily solve it. The impor-
tance of the Adleman's idea lies in the demonstration of a
potential computing power of DNA molecules rather than
in solving really hard instance of the problem.
 The algorithm described above is some abstract
procedure which should be implemented as a sequence of
biochemical experiments. According to the Adleman’s idea
the implementation can be as follows [1]:
1. For every vertex vi ∈ V, i = 1, 2,…, |V | randomly
generated sequence si = si(1)si(2) ⋅ ⋅ ⋅ si(k) is assigned and
for every arc(vi, vj) ∈ A there is assigned sequence

() () ()2 2 21 2 () (1) (2)k kk
ij i i i j j js s s s k s s s= + + " "

(here we assume that k is an even integer). In case of arcs
starting in vertex vs, i.e. the arcs of the form (vs, vx) ∈ A for
some x = 1, 2, …, |V | the corresponding sequence is longer
and has the form

()2(1) (2) () (1) (2) .k
sx s s s x x xs s s s k s s s= " "

Similarly, in case of arcs ending in vt, i.e. the ones of the
form (vx, vt) ∈ A the corresponding sequence has the form

() ()2 21 2 () (1) (2) ().k k
xt x x x t ts s s s k s s s k= + + " "

For every sequence si, i = 1, 2, … |V| there is generated
its reverse complementary sequence

(1) (2) ()i i i is s s s k= "

(here, ()is j denotes nucleotide complementary to nucleo-
tide si(j)).
 On the base of sequences is and sij there are created
oligonucleotides (in Adleman’s experiment 50 pmol for
each sequence). It is easy to note that oligonucleotides
corresponding to sequences is serve as binders of oligo-
nucleotides corresponding to sequences sij.
 From this follows that when all these molecules are
poured into one test tube they will create duplexes
corresponding to all paths present in graph G (as a result of
hybridization and ligation reactions).
2. In the second step the molecules created in step 1. are
multiplied by PCR with starters corresponding to se-
quences ss and ts . As a result only strands encoding paths
which start in vertex vs and end in vt are multiplied.
3. In the third step the product of step 2. is run on a gel
which makes possible to distinguish molecules encoding
paths of various lengths. From these molecules there are
taken those which have length equal to |V |k.
4. In the product of step 3. there are selected those
molecules which contain oligonucleotides corresponding to
all sequences si, i = 1, 2, …, |V |. This selection is made
using hybridization probes.

5. The product of step 4. is multiplied by PCR and run on
a gel in order to check if any DNA molecules correspond-
ing to the solution of the problem remained in the test tube.

4. STICKER MODEL

 In this section another model of DNA computing will
be described, i.e. the sticker model [15, 12]. As in every
DNA based computations also in this model a crucial
property of DNA molecules is their ability to making
duplexes according to the Watson-Crick complementarity
rule. The main difference between the sticker model and
the one previously described is that in the sticker model
there is a kind of a random access memory and the com-
putations do not depend on molecules extension like in
the approach proposed by Adleman and described in
the previous section.
 In the sticker model there are DNA strands which serve
as registers. The single stranded DNA molecules called
memory strands serve as such registers and another type of
single stranded DNAs called stickers are used to write and
erase information in the registers.
 A memory strand is composed of several segments in
each of which one bit of information can be stored. Each of
these segments is composed of l nucleotides. So, if a
memory strand can store p bits its length has to be n ≥ lp
nucleotides since the segments have to be non-overlapping.
 Stickers are composed of l nucleotides and each of them
is a DNA strand complementary to exactly one of the seg-
ments in a memory strand.
 Memory strands are sequences of bits whose values are
set by stickers. If a sticker hybridizes to complementary
segment in memory strands, then the bit corresponding to
this segment is set to 1. On the other hand, if to a given
segment no sticker hybridized, then the value of this bit
is 0.
 A memory strand with some bits set to 1 or 0 is called
a memory complex. An example of a memory strand and
stickers for writing information in this strand is shown
below:

GGGTGTTTCCCACACCTTTGGGGGAACCCACA

memory strand

CCCACAAA AAACCCCC

GGGTGTGG TTGGGTGT

stickers

 The nucleotide sequences of the memory strand seg-
ments are important and should be carefully chosen. It
should be such that it would be impossible for a sticker to
hybridize partially to one segment and to its neighbor. So,
the sequences should differ from each other sufficiently in
order to avoid such situations. Another issue which should
be taken into account is a melting temperature of the du-

DNA computing

15

plexes created by stickers and memory strands. In the ideal
case the temperature should be the same for all duplexes,
which would made all of them equally stable in given
physical conditions. Such an equal stability reduces the
ratio of possible hybridization errors. Examples of memory
complexes encoding binary numbers 0010, 1101 and 1000
are shown below:

 The basic operations used in the sticker model differ
from those described in Section 2. There are four such
operations: MERGE, SEPARATE, SET and CLEAR.
 Operation MERGE is the same as the one described in
Section 2, i.e. it combines two test tubes into one tube.
 Operation SEPARATE is different in sticker model.
Given test tube N and integer i, 1 ≤ i ≤ p it produces two
test tubes +(N, i) and !(N, i). Tube +(N, i) consists of all
memory complexes from N where the bit in position i is set
to 1, while tube !(N, i) contains those complexes, where
this bit is set to 0.
 Given test tube N and integer i, 1 ≤ i ≤ p, operation SET
produces test tube set(N, i), where the bit in position i of
each memory complex is set to 1.
 Analogously, operation clear produces test tube
clear (N, i), where in each memory complex the bit in
position i is set to 0.
 Obviously, computations in the sticker model are se-
quences of basic operations. Such a sequence must start
with some initial set of memory complexes and must
produce a set of such complexes being the answer to the
problem under consideration.
 The initial set of memory complexes is called (p, q)
library of strings. Such a library consists of memory
complexes composed of p segments, where q of them are
set to 0 or 1 in all possible ways (i.e. in each complex there
is written q-bit binary number in a random way, so in the
whole (p, q) library all q-bit binary numbers are written).
The remaining p-q segments (bits) are set to 0. The idea is
to search all 2q possible input strings in parallel and remove
those ones which do not fulfill the criteria necessary for the
solution to the considered problem.
 In order to read the answer it is necessary to isolate
a memory complex from the final tube and determine in
which positions the stickers hybridized.
 Let us illustrate the idea of the sticker model by its
application to solving the NP-complete Minimum Cover
problem, which is formulated as follows [5]:

INSTANCE: collection C = {C1, C2,…, Cα) of subsets of
finite set S = {1, 2, …, β}, positive integer K ≤ α.
ANSWER: YES, if C contains a cover for S of size K or less,
i.e. a subset C ' ⊆ C with |C '| ≤ K such that every element of
S belongs to at least one member of C ', otherwise, NO.

 In the search version of the problem the answer is the
subset C ' ⊆ C of minimal cardinality containing all ele-
ments of S or equivalently the minimal set I ⊆ {1, 2, …,α }
such that .ii I

C S
∈

=∪

 In order to solve the search version of the problem
using the sticker model memory complexes representing all
possible 2α subsets of C should be created [15, 12]. So, the
first α bits in each memory complex in initial test tube N0
indicate some subset C ' of collection C, which is equivalent
to set I ⊆ {1, 2, …, α} such that C ' =

1 2
{ , , },

zi i iC C C…
where I = {i1, i2, …, iz}. The last β bits in each complex are
initially set to 0. In a given memory complex representing
set I bits in positions α + j will be set to 1 if j ∈ .ii I

C
∈∪

 The algorithm solving the Minimum Cover problem is
based on the following idea [15, 12]. In the test tube there
are sequentially checked all bits in the memory strands,
which represent the subsets of collection C (i.e. bits in
positions 1, 2, …, α). If some bit in position i , 1 ≤ i ≤ α is
set to 1 in a given memory complex then the operation SET
is used to set to 1 all bits in positions α + j, where j ∈ Ci.
After processing all of the first α bits in this way it is
checked if all bits in positions α + 1, α + 2, …,α +β are set
to 1. If in a given memory complex it is the case it means
that subset C’ represented by this complex covers set S. It
remains to find among such complexes those ones which
represent subsets of minimal cardinality.
 Formally, the algorithm is as follows (ci

j denotes the j-th
element of set Ci, assuming, that the elements are in some
way indexed) [15, 12]:

 1. for i = 0 to α do begin
 2. separate +(N0, i) and !(N0, i)
 3. for j = 1 to |Ci| do begin
 4. set (+(N0, i), α + ci

j)
 5. end
 6. N0 ← merge(+(N0, i), !(N0, i))
 7. end
 8. for i = α + 1 to α + β do begin
 9. N0 ← +(N0, i)
10. end
11. for i = 0 to α ! 1 do begin
12. for j = i down to 0 do begin
13. separate +(Nj, i +1) and !(Nj, i + 1)
14. Nj + 1← merge(+(Nj, i + 1), Nj + 1)
15. Nj ← !(Nj, i + 1)
16. end
17. end
18. read N1

P. Formanowicz

16

19. else if it was empty read N2
20. else if it was empty read N3

17 + α. else if it was empty read Nα

 It is interesting to note that in the presented approach all
2α subsets of collection C are checked. If some classical
algorithm would be used for this purpose its time complex-
ity would be O(2α). On the other hand, in the described DNA
based algorithm all subsets containing set Ci, 1 ≤ i ≤ α are
processed in parallel, so the complexity of the approach is
O(α (α + β)).

5. ALGORITHMS FOR SOME SCHEDULING
PROBLEMS

5.1. Formulation of the problems

 In this section DNA based algorithms for some prob-
lems of scheduling tasks on a single machine with limited
availability will be presented. (Good overviews on
scheduling theory are given in [2, 13].) The algorithms use
the same model of computation as the Adleman's approach.
Let us note that the algorithm described in Section 3 solves
a decision problem, while the algorithms presented in this
section solve search problems which are formulated as
follows (here we use the standard three-field notation to
denote the problems (cf. [2, 4])):

PROBLEM 1, h1||Cmax:
INSTANCE: Set of n tasks T = {T1, T2, …, Tn} to be
processed, processing time pj for each Tj ∈ T, starting time
of a period of the machine non-availability s and length of
this period h.
ANSWER: A feasible schedule of minimal length.

PROBLEM 1, hk||Cmax:
INSTANCE: Set of n tasks T = {T1, T2, …, Tn} to be
processed, processing time pj for each Tj ∈ T, starting times
of the periods of machine non-availability s1, s2, …, sK and
lengths of these periods h1, h2, …, hK.

ANSWER: A feasible schedule of minimal length.

 In the above formulations feasible schedule means such
a schedule where the machine processes at most one task at
any time and no task is processed when the machine is not
available. Both of these problems are computationally hard,
i.e. the first of them is NP-hard in the ordinary sense and
the second one is NP-hard in the strong sense [6].
 As has been mentioned before one of the most impor-
tant aspects of DNA computing are strong connections
between encoding scheme, i.e. the ways in which the in-
stance of the considered problem is encoded in DNA
molecules and the algorithm itself. Obviously, such con-

nections exists also in the case of classical algorithms but
in DNA computing the encoding scheme influences the al-
gorithm usually much more than in the classical case.
Hence, the scheme should be developed very carefully.
 In the following subsections first there will be described
the encoding schemes and then the algorithms for the prob-
lems under consideration [3].

5.2. The algorithm for problem 1, h1||Cmax

 The general idea of the algorithm for this problem
follows from the obvious observation that in order to
solve it one should construct a partial schedule for the
time period between a starting point of the schedule and
the starting point of the non-availability period. In this
partial schedule the idle time should be as short as
possible and the sequence of tasks scheduled before the
non-availability period may be arbitrary (the sequence of
the remaining tasks, i.e. those scheduled after the period,
obviously also may be arbitrary). It is easy to see that
the criterion function, i.e. the schedule length, is mini-
mized when the idle time is minimized. Hence, in order
to solve the problem optimally it suffices to choose a sub-
set T‘ ∈ T such that

iT ip′∈Σ T is maximal, but not greater
than s.
 The algorithm follows the “standard” framework of
DNA computing described in Section 2, i.e. at the begin-
ning sequences encoding all tasks and some auxiliary
sequences are developed and oligonucleotides correspond-
ing to them are synthesized and poured into a test tube [3].
As a result of biochemical reactions in the tube there are
created longer DNA molecules which are concatenations of
oligonucleotides encoding the tasks (in one strand) and
the auxiliary oligonucleotides (in the complementary
strand). Most of these molecules do not encode any feasible
solution to the problem but some of them do. Moreover,
there is also a small fraction of molecules which encode
the optimal solutions. The goal of the algorithm is to
remove from the test tube all DNA molecules which do not
encode those solutions. In order to read the information
encoded in the resulting DNA molecule a standard DNA
sequencing procedure can be applied.

Encoding scheme

 The general principle of the encoding scheme is that
each task Ti, i = 1, 2, …, n is encoded by a unique DNA
sequence (oligonucleotide) [3]. For the sake of simplicity
of the method description in what follows we will not
distinguish between sequences and their corresponding
oligonucleotides since the latter are physical “implementa-
tions” of the former. (Note that the oligonucleotides de-
scribed here should be used in many copies in the
biochemical experiment, as usual in DNA computing.) We
will denote such a sequence by oi. The length of oi is equal
to dpi, where d is an even integer constant. Moreover, for

DNA computing

17

building the solution some auxiliary oligonucleotides are
necessary which join two consecutive oligonucleotides
encoding tasks in the sequence encoding the potential
solution. Each task from set T has to appear exactly ones
in the solution to the problem. In order to avoid a repetition
of some tasks in the schedule for each Ti, i = 1, 2, …,n it is
necessary to create oligonucleotides joining oi with oj
for j = i + 1, i + 2, …, n. It means that it is necessary to
create DNA sequences complementary to the right half of
oi and the left half of oj. We will denote such a sequence by

() () (), 2 2 21 2 () (1) (2) .ji i dpdp dp
i j i i i i j j ju o o o dp o o o= + + " "

 All these oligonucleotides are poured into test tube N
where they form a variety of double stranded DNA
molecules (some of them will encode the optimal solution
of the problem). The algorithm solving problem 1, h1||Cmax
is as follows [3]:

Algorithm
1. input (N)
2. N ← (N, ≤ ds)
3. N ← (N, max)
 In step 1. the algorithm “reads” an input, i.e. the test
tube N containing DNA strands encoding all potential
solutions to the problem.
 In step 2. from the solution N there are extracted only
those sequences whose lengths do not exceed ds nucleo-
tides. The other ones are removed and the result of this
operation is assigned again to tube N.
 In step 3. in tube N there are kept only those sequences
which have maximal length.
 As one can notice in the algorithm there is used only
one type of the basic operations described in Section 2. In
step 2. LENGTH-SEPARATE is applied in order to remove
those molecules which are to long for encoding the partial
schedule which could fit into the time slot before the non-
availability period. In step 3. the variant of this operation is
used which selects the longest molecule. This molecule
encodes the optimal subset of tasks which should be
scheduled before the non-availability interval. The se-
quence of these tasks does not affect the value of the crite-
rion function. The remaining tasks can be scheduled
arbitrarily after the non-availability period. The schedule
length is equal to ' .

iT is h p∈ −+ + Σ T T

5.3. The algorithm for problem 1,hk||Cmax
 The general idea of the algorithm is to some extent
similar to the previous one [3]. Indeed, optimal solution to
the problem 1, hk||Cmax may be decomposed into partial
schedules which fit to the time intervals between any two
consecutive non-availability periods (and between the start-
ing point of the schedule and the starting point of the first
non-availability interval). Hence, the problem can be

formulated as the one of finding partial schedules for the
availability periods such that the sum of the idle times in all
slots are minimal. However, arbitrary number of the non-
availability periods in the problem makes the algorithm
solving it much more complicated than the one for problem
1, h1||Cmax.

Encoding scheme

 Besides the oligonucleotides encoding the tasks several
additional types of molecules are used in the algorithm. All
the oligonucleotides necessary for the computations are
listed below [3]:
1. For each task Ti, i = 1, 2, …, n there are created
oligonucleotides σi of length dpi. For encoding any pair of
tasks Ti and Tj for which pi = pj different oligonucleotides
encoding them should be used.
2. There is created oligonucleotide ε of length equal to d
nucleotides corresponding to a unit idle time (the sequence
of ε has to be different from all oi, i = 1, 2, …, n.)
3. For each task Ti, i = 1, 2, …, n it is necessary to create
oligonucleotides joining oi with oj for j = 1, 2, …, n and
i ≠ j. It means that it is necessary to create DNA sequences
complementary to the right half of oi and the left half of oj.
We will denote such a sequence by

 () () (), 2 2 21 2 () (1) (2) .ji i dpdp dp
i j i i i i j j ju o o o dp o o o= + + " "

4. For each task Ti, i = 1, 2, …, n oligonucleotides joining
oi with ε and ε with oi are created. These oligonucleotides
are denoted by

() () (), 2 2 21 2 () (1) (2)i idp dp d
i i i i iu o o o dpε ε ε ε= + + " "

and () () (), 2 2 21 2 () (1) (2) ,idpd d
i i i iu d o o oε ε ε ε= + + " "

respectively.
5. There is generated an oligonucleotide joining ε with ε,
denoted by

() () ()2 2 21 2 () (1) (2) .d d du dε ε ε ε ε ε ε= + + " "

6. For each task Ti, i = 1, 2, …, n oligonucleotide
()2(1) (2) idp

i i i iu o o o= " complementary to the left half of
oi is created.
7. Oligonucleotide ()2(1) (2) duε ε ε ε− = " complementary
to the left half of ε is also created.

Algorithm
 According to the described above encoding scheme the
lengths of the non-availability intervals are not represented
by any oligonucleotides [3]. Indeed, it is assumed that all of
these lengths are equal to zero. This assumption simplifies
the encoding scheme and the algorithm. On the other hand,
the lengths may be easily added to the resulting schedule,

P. Formanowicz

18

so the final schedule will be the real solution to the
problem.
 The reduction of all non-availability periods lengths to
zero causes the change of the periods’ starting times
(except the first one). The new ones may be computed
according to the following formulae:

1 1

1

1

,

, 2, 3, , .
i

i i k
k

q s

q s h i K
−

=

=

= − =∑ …

 The algorithm also uses the lengths of time intervals
between any two consecutive non-availability periods.
They may be determined using formulae:

1 1,

1 1(), 2, 3, , .i i i i

v s

v s s h i K− −

=

= − + = …

 The input to the algorithm are the following four test
tubes:
 N – it consists of oi for i = 1, 2, …, n and ε,
 N0 – it consists of oi for i = 1, 2, …, n,
 N1 – it consists of ui for i = 1, 2, …, n and uε! ,
 N2 – it consists of ui,j for i = 1, 2, …, n, j = 1, 2, …, n,
 i ≠ j, ui,ε, uε,i for i = 1, 2, …, n and uε.

 The algorithm for problem 1, hk||Cmax works as follows
[3]:
 1. input(N, N0, N1, N2)
 2. N3 ← merge(N, N2)
 3. for i = 1 to K do begin
 4. Ntemp ← amplify(N3)
 5. Mi ← (Ntemp = dvi)
 6. end
 7. M1 ← merge(M1, N1)
 8. M = Ø
 9. for i = 1 to K do begin
 10. M ← merge(M, Mi, N2)
 11. M ← (M, =dqi)
 12. end
 13. N ← merge(M, N0)
 14. N ← merge(N, N2)
 15. for i = 1 to n do begin
 16. N ← +(N, oi)
 17. end
 18. N ← (N, min)
 In line 1. of the algorithm the input data are read, i.e.
tubes N, N0, N1 and N2.
 In line 2. tube N3 containing all oligonucleotides from N
and N2 is created.
 The loop in lines 3.-6. is performed K times (K is
the number of non-availability intervals). In this loop tubes
M1, M2, …, MK are created. These tubes contain partial
schedules corresponding to the time slots between any pair

of two consecutive non-availability intervals (except the first
one, which contains the partial schedules for the time slot
before the first non-availability interval). These partial
schedules will be merged in the next steps of the algorithm.
 In line 7. the terminators, i.e., oligonucleotides ui for
i = 1, 2, …, n and uε! are joined to the ends of the partial
schedules for the first time slot (between the starting point
of the schedule and the first non-availability period).
The terminators guarantee that in the following steps of
the algorithm potential partial schedules corresponding to
the first time slot will be at the beginning of every schedule
found by the algorithm (the terminators block left ends of
these partial schedules and no DNA molecule can hybridize
there). If the terminators were not joined at this stage of
the algorithm it could happen that partial schedules cor-
responding to the second time slot would joined to the left
ends of those ones which correspond to the first slot. In this
way infeasible schedule would be created (because such
a schedule would not correspond to the time slots between
the non-availability periods).
 In line 8. there is prepared a new test tube M, which at
the beginning consists of no DNA strands.
 The loop in lines 9.-12. is performed K times. In each
iteration i of this loop a partial solution is extended by
a partial schedule which fits to the i-th time slot.
The solution which is built in the loop is kept in tube M. At
iteration i all DNA strands whose lengths are not equal
to the sum of lengths of the first i time slots are removed
from M.
 In lines 13. and 14. the partial solution is extended by
the partial schedule corresponding to the last time slot, i.e.
time interval which begins at the end of the last non-
availability interval and the solutions are kept in tube N.
 In the loop in lines 15.-17. all strands which do not
contain at least one occurrence of every task are removed
from tube N. If some task appears more than once every
“additional” copies of the task should be interpreted as idle
times.
 In step 18. DNA strands with minimal length are
extracted and the others are removed from N. This test tube
after the step contains optimal solutions to the problem.
Indeed, at the end of the algorithm tube N contains only
those strands which encode each task at least once.
Moreover, the way of creation the partial schedules in lines
3.-6. and joining them together in lines 9.-12. ensures that
in the final schedule there are taken into account the mo-
ments when non-availability periods begin, i.e. this
moments correspond to the ending point of some task or
idle time in the schedule. Obviously, in order to obtain the
real length of the schedule it is necessary to add the sum of
all non-availability intervals to the length of the molecules
from tube N divided by d.
 The number of steps in this algorithm is proportional to
the number of non-availability intervals (the loops in lines

DNA computing

19

3.-6. and 9.-12.) and the number of tasks (the loop in lines
15.-17.), i.e. its time complexity is O(n + K).

5.4. Some extensions of the algorithms

 It is easy to note that the algorithms presented in this
section can be easily adopted to solve some other hard
combinatorial problems.
 First of all they can be used to solve the well-known
NP-complete Partition problem and strongly NP-complete
3-Partition problem defined as follows [5]:

PARTITION:

INSTANCE: Finite set A and size s(a) ∈ +Z�for each a ∈ A.

ANSWER: YES, if there is subset A' ⊆ A such that
' \ '() ();a A a A As a s a∈ ∈Σ = Σ otherwise, NO.

3-PARTITION:

INSTANCE: Set A of 3m elements, bound B +∈ Z for each
a ∈ A such that 4 2()B Bs a< < and such that () .a As a mB∈Σ =

ANSWER: YES, if A can be partitioned into disjoint sets A1,
A2, …, Am such that, for 1 ≤ i ≤ m, () ;

ia A s a B∈Σ = other-
wise, NO.

 In order to solve the Partition problem by the algorithm
for problem 1, h1||Cmax it suffices to set T = A and

().a As s a1
∈2 = Σ In the algorithm we can omit step 3. and

perform operation N ← (N, = ds) instead of N ← (N, ≤ ds)
in step 2. If there remains any sequence in tube N, then the
answer is YES. Otherwise the answer is NO.
 The algorithm for problem 1, hk||Cmax solves the 3-Parti-
tion problem if we set T =A, K = m ! 1, {1, 2, , }i K is iB∈∀ =…
and {1, 2, , } 0.i K ih∈∀ =… If tube N contains sequence of
length dmB after step 18., then the answer is YES. Other-
wise the answer is NO.
 Moreover, let us also observe that the algorithm for
problem 1, h1||Cmax can be also used to solve problem
P2||Cmax defined as follows:

PROBLEM P2||Cmax:

INSTANCE: Set of n tasks T = {T1, T2, …, Tn} to be proc-
essed, processing time pj for each Tj ∈ T, set M = {M1, M2}
of parallel identical machines.

ANSWER: A feasible schedule of minimal length.

 In order to obtain a solution to this problem it suffices
to schedule on the first machine tasks encoded by
molecules remaining in tube N after step 3. The other tasks
should be scheduled on the second machine. (Obviously,
the order of the machines is arbitrary.)
 One may also observe that the algorithm for problem
1, hk||Cmax can be used to solve decision problem Pm||Cmax ≤ y:

PROBLEM Pm||Cmax ≤ y:

INSTANCE: Set of n tasks T = {T1, T2, …, Tn} to be processed,
processing time pj for each Tj ∈ T, set of m parallel identical
machines M = {M1, M2, …, Mm}.

ANSWER: A feasible schedule of length not greater than y.

 In this case it suffices to set K = m ! 1 and vi = y for
i = 1, 2, …, K. If the molecules obtained in step 18. have
lengths not greater than dmy, then the answer is YES;
otherwise, the answer is NO.
 It is also easy to note that the same algorithm can be
used to solve analogous problem with periods of machine
non-availability, i.e. Pm, hik||Cmax ≤ y defined as follows:

PROBLEM Pm, hik ||Cmax ≤ y:

INSTANCE: Set of n tasks T = {T1, T2, …, Tn} to be
processed, processing time pj for each Tj ∈ T, set of m par-
allel identical machines M = {M1, M2, …, Mm}, number of
non-availability periods Ki on machine Mi for i = 1, 2, …, m,
starting times sik and lengths hik of the periods of machine
non-availability for i = 1, 2, …, m and k = 1, 2, …, Ki.

ANSWER: A feasible schedule of length not greater than y.

 In this case it is necessary to set values of K, vi and qi
for i = 1, 2,…, K according to the following algorithm:
 1. K0 = 0
 2. for i = 1 to m do begin
 3. si0 = 0
 4. hi0 = 0
 5. , 1ii Ks y+ =
 6. end
 7. for i = 1 to m do begin
 8. for k = 1 to Ki + 1 do begin
 9. 1

0 (1)i
llz K i k−

== + − +∑

 10. (), 1 , 1z ik i k i kv s s h− −= − +

 11. 1
z

z ppq v==∑

12. end
13. end

 14. 1
m
i iK K m== Σ +

 If the molecules remaining in tube N after performing
step 18. have lengths not greater than (),iKm

i ikkd my h=1 =1− Σ Σ
then the answer is YES. Otherwise, the answer is NO.

6. CONCLUSIONS

 In this paper basic concepts of DNA based computa-
tions have been presented and illustrated by some algo-
rithms known from the literature. This new model of
computing requires some new paradigms and offer, at least
in principle, new possibilities for solving hard problems.
One of the most important properties of DNA computing is

P. Formanowicz

20

its real massive parallelism (in “DNA computers” billions
of DNA molecules play the role of elementary processors).
The model of DNA computing is similar, to some extent, to
the non-deterministic Turing machine. Obviously, the sizes
of instances possible to solve by the methods of this type
are limited by the amount of DNA molecules necessary for
encoding all potential solutions to the problem under con-
sideration.
 One of the open questions concerning DNA computing
is its universality. It is still not clear if it will be possible to
develop a kind of universal “DNA computer” able to solve
any algorithmic problem. Most of the biochemical proce-
dures solving some algorithmic problems proposed until
now can be used to solve only one particular problem and
can be seen as some simple specialized “DNA computers”.
It should be also noted that it is relatively easy to develop
DNA based algorithms solving some set or graph
theoretical problems, while it is much more difficult to
design such methods solving arithmetic problems. It
follows from the general framework of DNA computing
where the operations on set of molecules are the most
natural ones. On the other hand, there are attempts to model
by DNA molecules deterministic Turing machines which
may eventually lead to a construction of universal molecu-
lar computer.

References
 [1] L. Adleman, Molecular computations of solutions to com-

binatorial problems, Science 266, 1021-1024 (1994).
 [2] J. Błażewicz, K. H. Ecker, E. Pesch, G. Schmidt and

J. Węglarz, Scheduling Computer and Manufacturing Proc-
esses, Springer-Verlag, Berlin 1996.

 [3] J. Błażewicz, P. Formanowicz, and R. Urbaniak, DNA
Based Algorithms for Some Scheduling Problems, Lecture
Notes in Computer Science 2611, 673-683 (2003).

 [4] P. Formanowicz, Selected deterministic scheduling prob-
lems with limited machine availability, Pro Dialog, 13, 91-
105 (2001).

 [5] M. R. Garey and D. S. Johnson, Computers and Intrac-
tability. A Guide to the Theory of NP-Completeness
W. H. Freeman and Company, San Francisco 1979.

 [6] C.-Y. Lee, Machine scheduling with an availability con-
straint, Journal of Global Optimization, 9, 395-416 (1996).

 [7] L. F. Landweber, E. B. Baum (eds.), DNA Based Com-
puters II, American Mathematical Society, 1999.

 [8] R. J. Lipton, DNA solution of hard computational
problems, Science 268, 542-545 (1995).

 [9] R. J. Lipton, E. B. Baum (eds.), DNA Based Computers,
American Mathematical Society, 1996.

 [10] A. Marathe, A. E. Condon and R. M. Corn, On combinato-
rial DNA word design, Journal of Computational Biology,
8, 201-219 (2001).

 [11] Q. Ouyang, P. D. Kaplan, S. Liu and A. Libchaber, DNA
solution of the maximal clique problem, Science, 278, 446-
-449 (1997).

 [12] G. Păun, G. Rozenberg and A. Salomaa, DNA Computing.
New Computing Paradigms, Springer-Verlag, Berlin 1998.

 [13] M. Pinedo and Scheduling, Theory, Algorithms, and Sys-
tems, Prentice Hall, Englewood Cliffs, New Jersey 1995.

 [14] S. Roweis and E. Winfree, On the reduction of errors in
DNA computation, Journal of Computational Biology, 6,
65-75 (1999).

 [15] S. Roweis, E. Winfree, R. Burgoyne, N. V. Chelyapov,
M. F. Goodman, P. W. K. Rothemund and L. M. Adleman,
A sticker-based model for DNA computation, Journal of
Computational Biology, 5, 615-629 (1998).

 [16] J. D. Watson and F. H. C. Crick, A structure of deoxiribose
nucleic acid, Nature, 171, 737-738 (1953).

 COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 11(1), 11-20 (2005)

