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Abstract: DNA computing is an alternative method of performing computations. It is based on the observation that in general it is 
possible to design a series of biochemical experiments involving DNA molecules which is equivalent to processing information encoded 
in these molecules. In classical computing devices electronic logic gates are elements which allow for storing and transforming informa-
tion. Designing of an appropriate sequence or a net of “store” and “transform” operations (in a sense of building a device or writing 
a program) is equivalent to preparing some computations. In DNA computing the situation is analogous. The main difference is the type 
of computing devices, since in this new method of computing instead of electronic gates DNA molecules are used for storing and 
transforming information. From this follows that the set of basic operations is different in comparison to electronic devices but the 
results of using them may be similar. Moreover, the inherent massive parallelism of DNA computing may lead to methods solving some 
intractable computational problems. In this paper basic principles of DNA computing are described and examples of DNA based 
algorithms solving some combinatorial problems are presented.  
Key words: DNA molecules, complementarity rule, combinatorial problems, algorithms, computational complexity 
 
 
 

1. INTRODUCTION 

 The first person who spoke about the possibility of 
performing computations at the molecular level was 
probably Richard Feynman. His ideas had to wait over 
twenty years to be implemented. They evolved in two 
directions one of them being quantum computing and 
the other DNA computing. The latter one has been initial-
ized by Leonard Adleman who solved the well-known hard 
combinatorial problem of finding Hamiltonian path be-
tween two vertices in a directed graph using DNA 
molecules [1]. His seminal paper influenced many re-
searchers who realized that DNA molecules in principle 
may serve as new computing devices. Adleman has 
founded a new way of thinking about computations since in 
DNA computing some new paradigms are needed. One of 
them is a real massive parallelism where a huge number of 
encoding strings are processed at the same time. Shortly 
after the publication of Adleman's paper DNA based algo-
rithms have been proposed for many classical hard 
combinatorial problems (cf. [8, 11]).  
 Nowadays the research effort in the area of DNA 
computing concentrates on four main problems: designing 
algorithms for some known combinatorial problems, de-
signing new basic operations of “DNA computers” (they are 
some biochemical procedures whose results may be in-
terpreted as results of some computations), developing new 
ways of encoding information in DNA molecules and reduc-
tion of errors in DNA based computations (cf. [9, 7, 10, 14]).  

 In this paper basic principles of DNA computing are 
presented and some exemplary algorithms are discussed. 
The organization of the paper is as follows. In Section 2 
the main ideas of DNA computing are presented. In Section 
3 the first DNA based algorithm, i.e. the one proposed by 
Adleman is described. In Section 4 a sticker model of DNA 
computing being one of the standard approaches to 
performing computations using DNA molecules is dis-
cussed. In Section 5 two algorithms for solving some 
problems of scheduling theory are presented and some 
extensions of them are also considered. The paper ends 
with conclusions in Section 6.  
 

2. FOUNDATIONS OF DNA COMPUTING 

2.1. The general idea 

 DNA based algorithms are composed of some basic 
operations, analogously to their classical counterparts. In 
this section the general idea of DNA computing will be 
briefly presented.  
 As it is easily to guess the nature of DNA molecules is 
crucial for DNA computing. In particular, the structure of 
these molecules, discovered by Watson and Crick [16], is 
fundamental for the possibility of using them for encoding 
and processing information. DNA molecules are composed 
of two strands, each of them being a sequence of nucleo-
tides which are of four types denoted by A, C, G, T. From 
computer science point of view a DNA strand is a word 
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over alphabet ΣDNA = {A, C, G, T}. One of the most important 
properties of nucleotides is their ability to join by hydrogen 
bonds. This property makes possible an existence of double 
stranded DNA molecules. To be more precise, within one 
DNA strand nucleotides are joined by strong phospho-
diester bonds. But additionally, every nucleotide A from 
one strand may be joined with nucleotide T from another 
strand by two hydrogen bonds and C may be joined with G 
by three hydrogen bonds (this rule is called Watson-Crick 
complementarity and A-T and C-G are pairs of complemen-
tary nucleotides). These bonds are weaker than the phos-
phodiester ones and they allow for forming the double 
stranded DNA molecules. For example, if there is a single 
stranded molecule 5'-TTGCATTAACGAC-3' it is possible that 
another molecule 3'-AACGTAATTGCTG-5' will hybridize to it, i.e. 
it will form a duplex:  

5'-TTGCATTAACGAC-3' 
3'-AACGTAATTGCTG-5' 

(Note, that in the above example the ends of the strands are 
denoted by 5' and 3'. In fact, DNA strands have orientation 
and by convention the left end of the molecule is denoted by 
5' and the right one by 3'. In the example 3'-AACGTAATTGCTG-5' is 
a sequence complementary to 5'-TTGCATTAACGAC-3' ! such a se-
quence has an opposite direction and at each position of the 
duplex nucleotides are complementary to each other.)  
 In all DNA based algorithms Watson-Crick comple-
mentarity allows for creating solutions encoded in double 
stranded DNA molecules composed of single stranded ones 
used for encoding a problem instance.  
 The idea of DNA computing is similar (to some extent) 
to the non-deterministic Turing machine. Indeed, in many 
DNA based algorithms at the beginning there are created 
DNA sequences encoding all feasible (not necessarily 
optimal) solutions to a given problem and a lot of other 
sequences which do not encode any feasible solutions. In 
the next steps the algorithm eliminates from this input set 
of sequences those which are not solutions to the consid-
ered problem and also those ones which do not encode 
optimal solutions. This elimination is performed succes-
sively and the power of DNA computers lies in their 
massive parallelism ! (almost) all encoding sequences are 
processed simultaneously. At the end of the computations 
in the set of DNA molecules there remain only those which 
encode the optimal solution.  
 The elimination of “bad” sequences is usually done in 
such a way that the algorithm checks successively if the 
sequences posses some properties necessary for every 
string which potentially could encode the problem solution. 
If they do not have these properties, they are eliminated 
from the set.  
 

2.2. Basic operations  
 Hence, the basic operations of DNA algorithms are 
usually designed for selecting sequences which satisfy 

some particular conditions. On the other hand, there may 
be different sets of such basic operations. In fact, any 
biochemical procedure which may be interpreted as a trans-
formation (or storing) information encoded in DNA mole-
cules may be treated as a basic operation of DNA based 
algorithms. One of the possible set of such operations is the 
following [12]: 

MERGE ! given two test tubes N1 and N2 create a new tube 
N containing all strands from N1 and N2.  

AMPLIFY ! given tube N create a copy of them.  

DETECT ! given tube N return true if N contains at least 
one DNA strand, otherwise return false.  

SEPARATE ! given tube N and word w over alphabet ΣDNA 
create two tubes +(N, w) and !(N, w), where +(N, w) 
consists of all strands from N containing w as a substring 
and !(N, w) consists of the remaining strands.  

LENGTH-SEPARATE ! given tube N and positive integer n 
create tube (N, ≤ n) containing all strands from N which are 
of length n or less.  

POSITION-SEPARATE ! given tube N and word w over 
alphabet ΣDNA create tube B(N, w) containing all strands 
from N which have w as a prefix and tube E(N, w) contain-
ing all strands from N which have w as a suffix.  

 Each of the above operations is a result of some stan-
dard biochemical procedure.  
 
2.3. Encoding of instances  
 One of the fundamental differences between classical 
and DNA computing is a very close relationship between 
the algorithm and the molecules encoding the problem 
instance in the case of molecular computations.  
 In electronic computers the input data are stored in 
standard memory or processor registers and the program-
mer must not take care of their structure. (This is true for 
most cases. Some exceptions may take place in the case of 
programs written in low level languages. However, also in 
this case the situation is relatively simple since the registers 
have “uniform” structure, i.e. the same for all programs.)  
 While designing algorithms which will be implemented 
on a classical computer one also need not consider the 
structure of the registers for storing problem data. (Obviously, 
also in this case there may be some exceptions, especially 
when some non-standard computer architectures are used. 
But again, the architecture is the same for all algorithms.)  
 The situation is completely different in the case of DNA 
computing. First, there is no clear distinction between 
an algorithm and a program. Second, for each problem its 
own encoding scheme must be developed, which is very 
closely connected with the algorithm.  
 The reason is a lack of some standard architecture 
of the “DNA computer”. Indeed, in some sense, for each 
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problem being solved by DNA molecules a new “hardware 
architecture” is developed.  
 So, the designing of DNA molecules for encoding 
problem instances is an important part of the process of 
algorithms developing and usually these two issues cannot 
be separated.  
 The molecules have to be designed in such a way that 
when poured into one test tube in a certain physical condi-
tions they will create double stranded DNA molecules 
encoding potential solutions to the considered problem.  

2.4. An example  
 The general idea of DNA computing may be illustrated 
by the following example. Let us consider a hypothetical 
combinatorial problem where certain permutation of some 
elements is looked for. For the sake of simplicity let us 
assume that the problem instance consists of only four 
elements x, y, w and z and let the optimal solution be xwzy. 
One of the possible way of encoding the instance in DNA 
molecules is as follows. To the elements of the instance 
there are assigned the following oligonucleotides: 

x : 5'-ACCGATTA-3',   y : 5'-GTACCATT-3',   w :  5'-TGAACCTA-3',   
z : 5'-AATTCGCG-3' 

 This set of oligonucleotides is not sufficient for the above 
mentioned process of forming DNA duplexes being potential 
solutions to the problem. There have to be added some ad-
ditional oligonucleotides which would be able to hybridize to 
right half of some of the oligonucleotides shown above and 
to left half of some other. These oligonucleotides will bind 
consecutive oligonucleotides in a double stranded DNA 
molecule encoding potential solution. 
 In the presented example such “binding” oligonucleo-
tides should be designed for every ordered pair of the mole-
cules encoding the instance. They should be as follows: 

x ! y: 3'-TAATCATG-5',    x ! w: 3'-TAATACTT-5',    x ! z: 3'-TAATTTAA-5', 
y ! x: 3'-GTAATGGC-5',   y ! w: 3'-GTAAACTT-5',   y ! z: 3'-GTAATTAA-5', 
w ! x: 3'-GGATTGGC-5', w ! y: 3'-GGATCATG-5',   w ! z: 3'-GGATTTAA-5', 
z ! x: 3'-GCGCTGGC-5',   z ! y: 3'-GCGCCATG-5',   z ! w: 3'-GCGCACTT-5' 

 When many copies of all these oligonucleotides are 
poured into test tube they will form all duplexes according 
to the complementarity rule. The complexes will be of 
various lengths, i.e. they will be composed of various 
numbers of oligonucleotides. Some of them may be as 
follows (in the parentheses there are indicated sequences of 
the instance elements which correspond to the created 
molecules):  

 

 
 
 It should be noted that in the real biochemical experi-
ment much more various duplexes would be created but 
only one of these many types of the molecules would 
encode the solution to the problem.  
 The formation of the duplexes is the first step of 
the DNA based algorithm. As was mentioned earlier, the 
next steps should be designed to eliminate from this huge 
variety of molecules those ones which do not encode the 
problem solution. This is usually done successively by 
eliminating molecules which do not have some properties 
necessary for every string encoding a solution of the con-
sidered problem.  
 In the example some initial steps of the algorithm 
should eliminate the molecules which are composed of less 
than four oligonucleotides, because they cannot encode any 
permutation of the instance elements. Next, the molecules 
composed of more than four oligonucleotides also should 
be removed, since they consist at least one repetition of 
some of the elements. Moreover, there has to be also 
a possibility of detection and removal of the molecules 
encoding solutions not maximizing (or minimizing) the 
value of the criterion function (not defined in this simple 
example). This issue is usually strongly problem-dependent 
and will be discussed in Section 5. 

3. ADLEMAN’S ALGORITHM 

 In this section the first DNA based algorithm, i.e. 
the one proposed by Adleman [1] will be described. As has 
been mentioned earlier, Adleman solved an instance of 
a problem of finding a Hamiltonian path between two 
vertices in a directed graph. The problem is NP-complete in 
the strong sense and is formulated as follows [5]:  

INSTANCE: Directed graph G = (V, A), two distinguished 
vertices vs, vt ∈  V.  

ANSWER: YES, if G contains a Hamiltonian path starting in 
vertex vs and ending in vertex vt, otherwise NO.  

 The algorithm proposed by Adleman consists of the 
following steps [1]: 
1. Create set S of all paths in G.  
2.  Remove from set S those paths which do not start in vs 

and do not end in vt.  
3.  Remove from S paths which consists of less or more 

than |V | vertices.  
4.  Remove from S those paths that traverse some vertex 

more than once.  
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5.  If set S is not empty, then the answer is YES, otherwise 
the answer is NO.  

 The instance of the problem solved by Adleman 
consisted of only seven vertices and obviously every 
electronic computer is able to easily solve it. The impor-
tance of the Adleman's idea lies in the demonstration of a 
potential computing power of DNA molecules rather than 
in solving really hard instance of the problem.  
 The algorithm described above is some abstract 
procedure which should be implemented as a sequence of 
biochemical experiments. According to the Adleman’s idea 
the implementation can be as follows [1]:  
1. For every vertex vi ∈  V, i = 1, 2,…, |V | randomly 
generated sequence si = si(1)si(2) ⋅ ⋅ ⋅ si(k) is assigned and 
for every arc(vi, vj) ∈  A there is assigned sequence 

( ) ( ) ( )2 2 21 2 ( ) (1) (2)k kk
ij i i i j j js s s s k s s s= + + " "  

(here we assume that k is an even integer). In case of arcs 
starting in vertex vs, i.e. the arcs of the form (vs, vx) ∈  A for 
some x = 1, 2, …, |V | the corresponding sequence is longer 
and has the form 

( )2(1) (2) ( ) (1) (2) .k
sx s s s x x xs s s s k s s s= " "  

Similarly, in case of arcs ending in vt, i.e. the ones of the 
form (vx, vt) ∈  A the corresponding sequence has the form 

( ) ( )2 21 2 ( ) (1) (2) ( ).k k
xt x x x t ts s s s k s s s k= + + " "  

For every sequence si, i = 1, 2, … |V| there is generated 
its reverse complementary sequence 

(1) (2) ( )i i i is s s s k= "  

(here, ( )is j  denotes nucleotide complementary to nucleo-
tide si( j)).  
 On the base of sequences is and sij there are created 
oligonucleotides (in Adleman’s experiment 50 pmol for 
each sequence). It is easy to note that oligonucleotides 
corresponding to sequences is  serve as binders of oligo-
nucleotides corresponding to sequences sij.  
 From this follows that when all these molecules are 
poured into one test tube they will create duplexes 
corresponding to all paths present in graph G (as a result of 
hybridization and ligation reactions).  
2. In the second step the molecules created in step 1. are 
multiplied by PCR with starters corresponding to se-
quences ss and ts . As a result only strands encoding paths 
which start in vertex vs and end in vt are multiplied.  
3. In the third step the product of step 2. is run on a gel 
which makes possible to distinguish molecules encoding 
paths of various lengths. From these molecules there are 
taken those which have length equal to |V |k.  
4. In the product of step 3. there are selected those 
molecules which contain oligonucleotides corresponding to 
all sequences si, i = 1, 2, …, |V |. This selection is made 
using hybridization probes.  

5. The product of step 4. is multiplied by PCR and run on 
a gel in order to check if any DNA molecules correspond-
ing to the solution of the problem remained in the test tube. 

4. STICKER MODEL 

 In this section another model of DNA computing will 
be described, i.e. the sticker model [15, 12]. As in every 
DNA based computations also in this model a crucial 
property of DNA molecules is their ability to making 
duplexes according to the Watson-Crick complementarity 
rule. The main difference between the sticker model and 
the one previously described is that in the sticker model 
there is a kind of a random access memory and the com-
putations do not depend on molecules extension like in 
the approach proposed by Adleman and described in 
the previous section.  
 In the sticker model there are DNA strands which serve 
as registers. The single stranded DNA molecules called 
memory strands serve as such registers and another type of 
single stranded DNAs called stickers are used to write and 
erase information in the registers.  
 A memory strand is composed of several segments in 
each of which one bit of information can be stored. Each of 
these segments is composed of l nucleotides. So, if a 
memory strand can store p bits its length has to be n ≥ lp 
nucleotides since the segments have to be non-overlapping.  
 Stickers are composed of l nucleotides and each of them 
is a DNA strand complementary to exactly one of the seg-
ments in a memory strand.  
 Memory strands are sequences of bits whose values are 
set by stickers. If a sticker hybridizes to complementary 
segment in memory strands, then the bit corresponding to 
this segment is set to 1. On the other hand, if to a given 
segment no sticker hybridized, then the value of this bit 
is 0.  
 A memory strand with some bits set to 1 or 0 is called 
a memory complex. An example of a memory strand and 
stickers for writing information in this strand is shown 
below: 

GGGTGTTTCCCACACCTTTGGGGGAACCCACA 

memory strand 

CCCACAAA   AAACCCCC 

GGGTGTGG   TTGGGTGT 

stickers 

 The nucleotide sequences of the memory strand seg-
ments are important and should be carefully chosen. It 
should be such that it would be impossible for a sticker to 
hybridize partially to one segment and to its neighbor. So, 
the sequences should differ from each other sufficiently in 
order to avoid such situations. Another issue which should 
be taken into account is a melting temperature of the du-
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plexes created by stickers and memory strands. In the ideal 
case the temperature should be the same for all duplexes, 
which would made all of them equally stable in given 
physical conditions. Such an equal stability reduces the 
ratio of possible hybridization errors. Examples of memory 
complexes encoding binary numbers 0010, 1101 and 1000 
are shown below: 

 

 The basic operations used in the sticker model differ 
from those described in Section 2. There are four such 
operations: MERGE, SEPARATE, SET and CLEAR.  
 Operation MERGE is the same as the one described in 
Section 2, i.e. it combines two test tubes into one tube.  
 Operation SEPARATE is different in sticker model. 
Given test tube N and integer i, 1 ≤ i ≤ p it produces two 
test tubes +(N, i) and !(N, i). Tube +(N, i) consists of all 
memory complexes from N where the bit in position i is set 
to 1, while tube !(N, i) contains those complexes, where 
this bit is set to 0.  
 Given test tube N and integer i, 1 ≤ i ≤ p, operation SET 
produces test tube set(N, i), where the bit in position i of 
each memory complex is set to 1.  
 Analogously, operation clear produces test tube 
clear (N, i), where in each memory complex the bit in 
position i is set to 0.  
 Obviously, computations in the sticker model are se-
quences of basic operations. Such a sequence must start 
with some initial set of memory complexes and must 
produce a set of such complexes being the answer to the 
problem under consideration.  
 The initial set of memory complexes is called (p, q) 
library of strings. Such a library consists of memory 
complexes composed of p segments, where q of them are 
set to 0 or 1 in all possible ways (i.e. in each complex there 
is written q-bit binary number in a random way, so in the 
whole (p, q) library all q-bit binary numbers are written). 
The remaining p-q segments (bits) are set to 0. The idea is 
to search all 2q possible input strings in parallel and remove 
those ones which do not fulfill the criteria necessary for the 
solution to the considered problem.  
 In order to read the answer it is necessary to isolate 
a memory complex from the final tube and determine in 
which positions the stickers hybridized.  
 Let us illustrate the idea of the sticker model by its 
application to solving the NP-complete Minimum Cover 
problem, which is formulated as follows [5]: 

INSTANCE: collection C = {C1, C2,…, Cα) of subsets of 
finite set S = {1, 2, …,  β}, positive integer K ≤ α.  
ANSWER: YES, if C contains a cover for S of size K or less, 
i.e. a subset C ' ⊆  C with |C '| ≤ K such that every element of 
S belongs to at least one member of C ', otherwise, NO.  

 In the search version of the problem the answer is the 
subset C ' ⊆  C of minimal cardinality containing all ele-
ments of S or equivalently the minimal set I ⊆  {1, 2, …,α } 
such that .ii I

C S
∈

=∪   

 In order to solve the search version of the problem 
using the sticker model memory complexes representing all 
possible 2α subsets of C should be created [15, 12]. So, the 
first α bits in each memory complex in initial test tube N0 
indicate some subset C ' of collection C, which is equivalent 
to set I ⊆  {1, 2, …, α} such that C ' = 

1 2
{ , , },

zi i iC C C…  
where I = {i1, i2, …, iz}. The last β bits in each complex are 
initially set to 0. In a given memory complex representing 
set I bits in positions α + j will be set to 1 if j ∈  .ii I

C
∈∪   

 The algorithm solving the Minimum Cover problem is 
based on the following idea [15, 12]. In the test tube there 
are sequentially checked all bits in the memory strands, 
which represent the subsets of collection C (i.e. bits in 
positions 1, 2, …, α). If some bit in position i , 1 ≤ i ≤ α is 
set to 1 in a given memory complex then the operation SET 
is used to set to 1 all bits in positions α + j, where j ∈  Ci. 
After processing all of the first α bits in this way it is 
checked if all bits in positions α + 1, α + 2, …,α +β are set 
to 1. If in a given memory complex it is the case it means 
that subset C’ represented by this complex covers set S. It 
remains to find among such complexes those ones which 
represent subsets of minimal cardinality.  
 Formally, the algorithm is as follows (ci

j denotes the j-th 
element of set Ci, assuming, that the elements are in some 
way indexed) [15, 12]: 

  1.  for i = 0 to α do begin  
  2.    separate +(N0, i) and !(N0, i)  
  3.   for j = 1 to |Ci| do begin  
  4.    set (+(N0, i), α + ci

j )  
  5.   end  
  6.   N0 ← merge(+(N0, i), !(N0, i))  
  7.  end  
  8.  for i = α + 1 to α + β do begin  
  9.   N0 ← +(N0, i)  
10.  end  
11.  for i = 0 to α ! 1 do begin  
12.   for j = i down to 0 do begin  
13.    separate +(Nj, i +1) and !(Nj, i + 1)  
14.    Nj + 1← merge(+(Nj, i + 1), Nj + 1)  
15.    Nj ← !(Nj, i + 1)  
16.   end  
17.  end  
18.  read N1  
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19.  else if it was empty read N2  
20.  else if it was empty read N3  
    ............  
17 + α. else if it was empty read Nα 

 It is interesting to note that in the presented approach all 
2α subsets of collection C are checked. If some classical 
algorithm would be used for this purpose its time complex-
ity would be O(2α). On the other hand, in the described DNA 
based algorithm all subsets containing set Ci, 1 ≤ i ≤ α are 
processed in parallel, so the complexity of the approach is 
O(α (α + β)). 
 

5. ALGORITHMS FOR SOME SCHEDULING 
PROBLEMS 

5.1. Formulation of the problems 

 In this section DNA based algorithms for some prob-
lems of scheduling tasks on a single machine with limited 
availability will be presented. (Good overviews on 
scheduling theory are given in [2, 13].) The algorithms use 
the same model of computation as the Adleman's approach. 
Let us note that the algorithm described in Section 3 solves 
a decision problem, while the algorithms presented in this 
section solve search problems which are formulated as 
follows (here we use the standard three-field notation to 
denote the problems (cf. [2, 4])):  
 
PROBLEM 1, h1||Cmax:  
INSTANCE: Set of n tasks T  = {T1, T2, …, Tn} to be 
processed, processing time pj for each Tj ∈  T, starting time 
of a period of the machine non-availability s and length of 
this period h.  
ANSWER: A feasible schedule of minimal length. 

PROBLEM 1, hk||Cmax:  
INSTANCE: Set of n tasks T  = {T1, T2, …, Tn} to be 
processed, processing time pj for each Tj ∈  T, starting times 
of the periods of machine non-availability s1, s2, …, sK and 
lengths of these periods h1, h2, …, hK.  

ANSWER: A feasible schedule of minimal length. 

 In the above formulations feasible schedule means such 
a schedule where the machine processes at most one task at 
any time and no task is processed when the machine is not 
available. Both of these problems are computationally hard, 
i.e. the first of them is NP-hard in the ordinary sense and 
the second one is NP-hard in the strong sense [6].  
 As has been mentioned before one of the most impor-
tant aspects of DNA computing are strong connections 
between encoding scheme, i.e. the ways in which the in-
stance of the considered problem is encoded in DNA 
molecules and the algorithm itself. Obviously, such con-

nections exists also in the case of classical algorithms but 
in DNA computing the encoding scheme influences the al-
gorithm usually much more than in the classical case. 
Hence, the scheme should be developed very carefully.  
 In the following subsections first there will be described 
the encoding schemes and then the algorithms for the prob-
lems under consideration [3]. 
 

5.2. The algorithm for problem 1, h1||Cmax  

 The general idea of the algorithm for this problem 
follows from the obvious observation that in order to 
solve it one should construct a partial schedule for the 
time period between a starting point of the schedule and 
the starting point of the non-availability period. In this 
partial schedule the idle time should be as short as 
possible and the sequence of tasks scheduled before the 
non-availability period may be arbitrary (the sequence of 
the remaining tasks, i.e. those scheduled after the period, 
obviously also may be arbitrary). It is easy to see that 
the criterion function, i.e. the schedule length, is mini-
mized when the idle time is minimized. Hence, in order 
to solve the problem optimally it suffices to choose a sub-
set T‘ ∈  T such that 

iT ip′∈Σ T   is maximal, but not greater 
than s.  
 The algorithm follows the “standard” framework of 
DNA computing described in Section 2, i.e. at the begin-
ning sequences encoding all tasks and some auxiliary 
sequences are developed and oligonucleotides correspond-
ing to them are synthesized and poured into a test tube [3]. 
As a result of biochemical reactions in the tube there are 
created longer DNA molecules which are concatenations of 
oligonucleotides encoding the tasks (in one strand) and 
the auxiliary oligonucleotides (in the complementary 
strand). Most of these molecules do not encode any feasible 
solution to the problem but some of them do. Moreover, 
there is also a small fraction of molecules which encode 
the optimal solutions. The goal of the algorithm is to 
remove from the test tube all DNA molecules which do not 
encode those solutions. In order to read the information 
encoded in the resulting DNA molecule a standard DNA 
sequencing procedure can be applied.  
 
Encoding scheme 

 The general principle of the encoding scheme is that 
each task Ti, i = 1, 2, …, n is encoded by a unique DNA 
sequence (oligonucleotide) [3]. For the sake of simplicity 
of the method description in what follows we will not 
distinguish between sequences and their corresponding 
oligonucleotides since the latter are physical “implementa-
tions” of the former. (Note that the oligonucleotides de-
scribed here should be used in many copies in the 
biochemical experiment, as usual in DNA computing.) We 
will denote such a sequence by oi. The length of oi is equal 
to dpi, where d is an even integer constant. Moreover, for 
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building the solution some auxiliary oligonucleotides are 
necessary which join two consecutive oligonucleotides 
encoding tasks in  the sequence encoding the potential 
solution. Each task from set T  has to appear exactly ones 
in the solution to the problem. In order to avoid a repetition 
of some tasks in the schedule for each Ti, i = 1, 2, …,n it is 
necessary to create oligonucleotides joining oi with oj 
for j = i + 1, i + 2, …, n. It means that it is necessary to 
create DNA sequences complementary to the right half of 
oi and the left half of oj. We will denote such a sequence by  

( ) ( ) ( ), 2 2 21 2 ( ) (1) (2) .ji i dpdp dp
i j i i i i j j ju o o o dp o o o= + + " "  

 All these oligonucleotides are poured into test tube N 
where they form a variety of double stranded DNA 
molecules (some of them will encode the optimal solution 
of the problem). The algorithm solving problem 1, h1||Cmax 
is as follows [3]: 
 
Algorithm 
1. input (N)  
2. N ← (N, ≤ ds)  
3. N ← (N, max) 
 In step 1. the algorithm “reads” an input, i.e. the test 
tube N containing DNA strands encoding all potential 
solutions to the problem. 
 In step 2. from the solution N there are extracted only 
those sequences whose lengths do not exceed ds nucleo-
tides. The other ones are removed and the result of this 
operation is assigned again to tube N.  
 In step 3. in tube N there are kept only those sequences 
which have maximal length.  
 As one can notice in the algorithm there is used only 
one type of the basic operations described in Section 2. In 
step 2. LENGTH-SEPARATE is applied in order to remove 
those molecules which are to long for encoding the partial 
schedule which could fit into the time slot before the non-
availability period. In step 3. the variant of this operation is 
used which selects the longest molecule. This molecule 
encodes the optimal subset of tasks which should be 
scheduled before the non-availability interval. The se-
quence of these tasks does not affect the value of the crite-
rion function. The remaining tasks can be scheduled 
arbitrarily after the non-availability period. The schedule 
length is equal to ' .

iT is h p∈ −+ + Σ T T  

 
5.3. The algorithm for problem 1,hk||Cmax  
 The general idea of the algorithm is to some extent 
similar to the previous one [3]. Indeed, optimal solution to 
the problem 1, hk||Cmax may be decomposed into partial 
schedules which fit to the time intervals between any two 
consecutive non-availability periods (and between the start-
ing point of the schedule and the starting point of the first 
non-availability interval). Hence, the problem can be 

formulated as the one of finding partial schedules for the 
availability periods such that the sum of the idle times in all 
slots are minimal. However, arbitrary number of the non-
availability periods in the problem makes the algorithm 
solving it much more complicated than the one for problem 
1, h1||Cmax. 
 

Encoding scheme  

 Besides the oligonucleotides encoding the tasks several 
additional types of molecules are used in the algorithm. All 
the oligonucleotides necessary for the computations are 
listed below [3]: 
1. For each task Ti, i = 1, 2, …, n there are created 
oligonucleotides σi of length dpi. For encoding any pair of 
tasks Ti and Tj for which pi = pj different oligonucleotides 
encoding them should be used.  
2. There is created oligonucleotide ε of length equal to d 
nucleotides corresponding to a unit idle time (the sequence 
of ε has to be different from all oi, i = 1, 2, …, n.)  
3. For each task Ti, i = 1, 2, …, n it is necessary to create 
oligonucleotides joining oi with oj for  j = 1, 2, …, n and 
i ≠ j. It means that it is necessary to create DNA sequences 
complementary to the right half of oi and the left half of oj. 
We will denote such a sequence by 

 ( ) ( ) ( ), 2 2 21 2 ( ) (1) (2) .ji i dpdp dp
i j i i i i j j ju o o o dp o o o= + + " "  

4. For each task Ti, i = 1, 2, …, n oligonucleotides joining 
oi with ε and ε with oi are created. These oligonucleotides 
are denoted by 

( ) ( ) ( ), 2 2 21 2 ( ) (1) (2)i idp dp d
i i i i iu o o o dpε ε ε ε= + + " "  

and ( ) ( ) ( ), 2 2 21 2 ( ) (1) (2) ,idpd d
i i i iu d o o oε ε ε ε= + + " "  

respectively. 
5. There is generated an oligonucleotide joining ε with ε, 
denoted by 

( ) ( ) ( )2 2 21 2 ( ) (1) (2) .d d du dε ε ε ε ε ε ε= + + " "  

6. For each task Ti, i = 1, 2, …, n oligonucleotide 
( )2(1) (2) idp

i i i iu o o o= "  complementary to the left half of 
oi is created.  
7. Oligonucleotide ( )2(1) (2) duε ε ε ε− = "  complementary 
to the left half of ε is also created.  
 
Algorithm 
 According to the described above encoding scheme the 
lengths of the non-availability intervals are not represented 
by any oligonucleotides [3]. Indeed, it is assumed that all of 
these lengths are equal to zero. This assumption simplifies 
the encoding scheme and the algorithm. On the other hand, 
the lengths may be easily added to the resulting schedule, 
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so the final schedule will be the real solution to the 
problem.  
 The reduction of all non-availability periods lengths to 
zero causes the change of the periods’ starting times 
(except the first one). The new ones may be computed 
according to the following formulae:  

1 1

1

1

,

, 2, 3, , .
i

i i k
k

q s

q s h i K
−

=

=

= − =∑ …
 

 The algorithm also uses the lengths of time intervals 
between any two consecutive non-availability periods. 
They may be determined using formulae:  

1 1,

1 1( ), 2, 3, , .i i i i

v s

v s s h i K− −

=

= − + = …
 

 The input to the algorithm are the following four test 
tubes:  
 N –  it consists of oi for i = 1, 2, …, n and ε,  
 N0 –  it consists of oi for i = 1, 2, …, n,  
 N1 –  it consists of ui for i = 1, 2, …, n and uε! ,  
 N2 –  it consists of ui,j for i = 1, 2, …, n, j = 1, 2, …, n, 
   i ≠ j, ui,ε, uε,i for i = 1, 2, …, n and uε.  

 The algorithm for problem 1, hk||Cmax works as follows 
[3]: 
   1.  input(N, N0, N1, N2)  
   2.  N3 ← merge(N, N2)  
   3.  for i = 1 to K do begin  
   4.   Ntemp ← amplify(N3)  
   5.   Mi ← (Ntemp = dvi)  
   6.  end  
   7.  M1 ← merge(M1, N1)  
   8.  M = Ø 
   9.  for i = 1 to K do begin  
 10.  M ← merge(M, Mi, N2)  
 11.   M ← (M, =dqi)  
 12.  end  
 13.  N ← merge(M, N0)  
 14.  N ← merge(N, N2)  
 15.  for i = 1 to n do begin  
 16.   N ← +(N, oi)  
 17.  end  
 18.  N ← (N, min)  
 In line 1. of the algorithm the input data are read, i.e. 
tubes N, N0, N1 and N2.  
 In line 2. tube N3 containing all oligonucleotides from N 
and N2 is created.  
 The loop in lines 3.-6. is performed K times (K is 
the number of non-availability intervals). In this loop tubes 
M1, M2, …, MK are created. These tubes contain partial 
schedules corresponding to the time slots between any pair 

of two consecutive non-availability intervals (except the first 
one, which contains the partial schedules for the time slot 
before the first non-availability interval). These partial 
schedules will be merged in the next steps of the algorithm.  
 In line 7. the terminators, i.e., oligonucleotides ui for 
i = 1, 2, …, n and uε! are joined to the ends of the partial 
schedules for the first time slot (between the starting point 
of the schedule and the first non-availability period). 
The terminators guarantee that in the following steps of 
the algorithm potential partial schedules corresponding to 
the first time slot will be at the beginning of every schedule 
found by the algorithm (the terminators block left ends of 
these partial schedules and no DNA molecule can hybridize 
there). If the terminators were not joined at this stage of 
the algorithm it could happen that partial schedules cor-
responding to the second time slot would joined to the left 
ends of those ones which correspond to the first slot. In this 
way infeasible schedule would be created (because such 
a schedule would not correspond to the time slots between 
the non-availability periods).  
 In line 8. there is prepared a new test tube M, which at 
the beginning consists of no DNA strands.  
 The loop in lines 9.-12. is performed K times. In each 
iteration i of this loop a partial solution is extended by 
a partial schedule which fits to the i-th time slot. 
The solution which is built in the loop is kept in tube M. At 
iteration i all DNA strands whose lengths are not equal 
to the sum of lengths of the first i time slots are removed 
from M.  
 In lines 13. and 14. the partial solution is extended by 
the partial schedule corresponding to the last time slot, i.e. 
time interval which begins at the end of the last non-
availability interval and the solutions are kept in tube N.  
 In the loop in lines 15.-17. all strands which do not 
contain at least one occurrence of every task are removed 
from tube N. If some task appears more than once every 
“additional” copies of the task should be interpreted as idle 
times.  
 In step 18. DNA strands with minimal length are 
extracted and the others are removed from N. This test tube 
after the step contains optimal solutions to the problem. 
Indeed, at the end of the algorithm tube N contains only 
those strands which encode each task at least once. 
Moreover, the way of creation the partial schedules in lines 
3.-6. and joining them together in lines 9.-12. ensures that 
in the final schedule there are taken into account the mo-
ments when non-availability periods begin, i.e. this 
moments correspond to the ending point of some task or 
idle time in the schedule. Obviously, in order to obtain the 
real length of the schedule it is necessary to add the sum of 
all non-availability intervals to the length of the molecules 
from tube N divided by d.  
 The number of steps in this algorithm is proportional to 
the number of non-availability intervals (the loops in lines 
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3.-6. and 9.-12.) and the number of tasks (the loop in lines 
15.-17.), i.e. its time complexity is O(n + K).  

 
5.4. Some extensions of the algorithms  

 It is easy to note that the algorithms presented in this 
section can be easily adopted to solve some other hard 
combinatorial problems.  
 First of all they can be used to solve the well-known 
NP-complete Partition problem and strongly NP-complete 
3-Partition problem defined as follows [5]: 
 
PARTITION:  

INSTANCE: Finite set A and size s(a) ∈  +Z�for each a ∈  A.  

ANSWER: YES, if there is subset A' ⊆  A such that 
' \ '( ) ( );a A a A As a s a∈ ∈Σ = Σ  otherwise, NO.  

 
3-PARTITION:  

INSTANCE: Set A of 3m elements, bound B +∈ Z for each 
a ∈  A such that 4 2( )B Bs a< <  and such that ( ) .a As a mB∈Σ =  

ANSWER: YES, if A can be partitioned into disjoint sets A1, 
A2, …, Am such that, for 1 ≤ i ≤ m, ( ) ;

ia A s a B∈Σ =  other-
wise, NO.  

 In order to solve the Partition problem by the algorithm 
for problem 1, h1||Cmax it suffices to set T = A and 

( ).a As s a1
∈2 = Σ  In the algorithm we can omit step 3. and 

perform operation N ← (N, = ds) instead of N ← (N, ≤ ds) 
in step 2. If there remains any sequence in tube N, then the 
answer is YES. Otherwise the answer is NO. 
 The algorithm for problem 1, hk||Cmax solves the 3-Parti-
tion problem if we set T  =A, K = m ! 1, {1, 2, , }i K is iB∈∀ =…  
and {1, 2, , } 0.i K ih∈∀ =…  If tube N contains sequence of 
length dmB after step 18., then the answer is YES. Other-
wise the answer is NO.  
 Moreover, let us also observe that the algorithm for 
problem 1, h1||Cmax can be also used to solve problem 
P2||Cmax defined as follows:  
 

PROBLEM P2||Cmax:  

INSTANCE: Set of n tasks T  = {T1, T2, …, Tn} to be proc-
essed, processing time pj for each Tj ∈  T, set M = {M1, M2} 
of parallel identical machines.  

ANSWER: A feasible schedule of minimal length.  

 In order to obtain a solution to this problem it suffices 
to schedule on the first machine tasks encoded by 
molecules remaining in tube N after step 3. The other tasks 
should be scheduled on the second machine. (Obviously, 
the order of the machines is arbitrary.) 
 One may also observe that the algorithm for problem 
1, hk||Cmax can be used to solve decision problem Pm||Cmax ≤ y:  

PROBLEM Pm||Cmax ≤ y:  

INSTANCE: Set of n tasks T  = {T1, T2, …, Tn} to be processed, 
processing time pj for each Tj ∈  T, set of m parallel identical 
machines M = {M1, M2, …, Mm}. 

ANSWER: A feasible schedule of length not greater than y.  

 In this case it suffices to set K = m ! 1 and vi = y for 
i = 1, 2, …, K. If the molecules obtained in step 18. have 
lengths not greater than dmy, then the answer is YES; 
otherwise, the answer is NO.  
 It is also easy to note that the same algorithm can be 
used to solve analogous problem with periods of machine 
non-availability, i.e. Pm, hik||Cmax  ≤ y defined as follows: 
 
PROBLEM Pm, hik ||Cmax  ≤ y:  

INSTANCE: Set of n tasks T  = {T1, T2, …, Tn} to be 
processed, processing time pj for each Tj ∈  T, set of m par-
allel identical machines M = {M1, M2, …, Mm}, number of 
non-availability periods Ki on machine Mi for i = 1, 2, …, m, 
starting times sik and lengths hik of the periods of machine 
non-availability for i = 1, 2, …, m and k = 1, 2, …, Ki.  

ANSWER: A feasible schedule of length not greater than y.  

 In this case it is necessary to set values of K, vi and qi 
for i = 1, 2,…, K according to the following algorithm:  
   1. K0 =  0  
   2.  for i = 1 to m do begin  
   3.   si0 = 0  
   4.   hi0  = 0  
   5.   , 1ii Ks y+ =  
   6.  end  
   7.  for i = 1 to m do begin  
   8.   for k = 1 to Ki + 1 do begin  
   9.   1

0 ( 1)i
llz K i k−

== + − +∑  

 10.   ( ), 1 , 1z ik i k i kv s s h− −= − +  

 11.     1
z

z ppq v==∑  

12.      end   
13. end 

 14. 1
m
i iK K m== Σ +  

 If the molecules remaining in tube N after performing 
step 18. have lengths not greater than ( ),iKm

i ikkd my h=1 =1− Σ Σ  
then the answer is YES. Otherwise, the answer is NO.  

6. CONCLUSIONS 

 In this paper basic concepts of DNA based computa-
tions have been presented and illustrated by some algo-
rithms known from the literature. This new model of 
computing requires some new paradigms and offer, at least 
in principle, new possibilities for solving hard problems. 
One of the most important properties of DNA computing is 
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its real massive parallelism (in “DNA computers” billions 
of DNA molecules play the role of elementary processors). 
The model of DNA computing is similar, to some extent, to 
the non-deterministic Turing machine. Obviously, the sizes 
of instances possible to solve by the methods of this type 
are limited by the amount of DNA molecules necessary for 
encoding all potential solutions to the problem under con-
sideration.  
 One of the open questions concerning DNA computing 
is its universality. It is still not clear if it will be possible to 
develop a kind of universal “DNA computer” able to solve 
any algorithmic problem. Most of the biochemical proce-
dures solving some algorithmic problems proposed until 
now can be used to solve only one particular problem and 
can be seen as some simple specialized “DNA computers”. 
It should be also noted that it is relatively easy to develop 
DNA based algorithms solving some set or graph 
theoretical problems, while it is much more difficult to 
design such methods solving arithmetic problems. It 
follows from the general framework of DNA computing 
where the operations on set of molecules are the most 
natural ones. On the other hand, there are attempts to model 
by DNA molecules deterministic Turing machines which 
may eventually lead to a construction of universal molecu-
lar computer. 
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