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Abstract: The method of exponentially correlated Gaussian (ECG) wave functions is extended to the case of multicenter molecular 
systems with nuclei arranged in a 3-dimensional space. A particular case of a four-center two-electron system, 2

4H ,+  is studied by 
means of the variational approach. The energies reported in this work are the most accurate available to date. 
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1. INTRODUCTION 

 Molecular systems built of protons and electrons, form-
ing various clusters or rings, have been of interest for 
a long time now [1]. One reason for this interest is their 
strong analogy to the carbon rings. Another is the relative 
simplicity of their electronic structure which enables 
a theoretical treatment at a high level of accuracy. 
The questions raised in relation to such systems concern 
their thermochemical stability, pathways of dissociation 
and ways of stabilization of the unstable conformations. 
Another interesting issue is the relation of the stability to 
the topology of the nuclear centers held together by a given 
number of electrons. Glukhovtsev et al. studied theoreti-
cally the four-center two-electron (4c!2e) clusters of 
hydrogens and alkali metals and found that an incomplete 
description in terms of molecular orbitals may lead to an 
erroneous answer [2]. The 4c!2e bonding, although rare, 
can be found in various organic compounds. The 2

4H +  
system is the smallest species that might model this type of 
bonding. The stability of 2

4H + depends directly on the com-
petition between the repulsive forces and the binding effect 
of the two electrons. Glukhovtsev et al. investigated 
a possible existence of the 2

4H + dication from the point of 
view of the quality of the one-electron basis set in the 
frames of the Hartree-Fock and MP2 methods [3]. They 
concluded that the standard value of the exponent in the p 
polarization function of the hydrogen atom, usually treated 
as satisfactory, leads to an incorrect description of the sta-
tionary point of the tetrahedral structure. Optimization of 
this exponent with respect to the energy led to qualitative 
changes in results and a conclusion that 2

4H + was unstable. 
They confirmed this assertion later on by increasing 
the level of theory to the coupled cluster with singles and 
doubles (CCSD) with a large basis set [4]. 
 The unbound or weakly bound systems require particu-
larly accurate theoretical description with the electron cor-

relation treated at a possibly high level. There are two 
explicitly correlated methods which for two electron systems 
are capable of supplying extremely accurate results. One 
method is based on the Kołos-Wolniewicz (KW) wave 
functions [5] and the other on the exponentially correlated 
Gaussian (ECG) wave functions [6]. The KW wave 
function is a generalization of the James-Coolidge function 
[7] and, being expressed in elliptic coordinates, it is par-
ticularly suited to two-center two-electron systems. The 
KW method supplied a large number of benchmark-quality 
results concerning mainly the hydrogen molecule (for a re-
view see Chapter 2 in [6]). Unfortunately, this method has 
never been generalized to a multicenter case. In contrast, 
the ECG method is very well suited for description of 
multicenter systems and simultaneously it is as accurate as 
the KW method [8]. It is a well known feature of the Gaus-
sian-type functions, usually referred to as the Gaussian 
Product Theorem, that the product of two Gaussian func-
tions centered at two different points A and B in a 3-di-
mensional space gives a single Gaussian function centered 
at a point P lying somewhere on the line connecting the 
original centers:  
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This feature allows one to reduce significantly the number 
of Gaussian centers which, in turn, simplifies greatly an 
evaluation of molecular integrals. In more detail the ECG 
method will be described in the following sections. In 
particular, we shall report on an extension of the ECG 
programs to a multicenter 3-dimensional case and on accu-
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rate variational estimates of the energies of the 2
4H + system 

in the most important conformations. We note that in the past 
the ECG methodology was applied to planar systems: 3H+  
[9] and H3 [10]. There are also calculations by Cencek on 
nonplanar 5H+ cation cited in [11] as a ‘personal com-
munication’. 

 

2. THE METHOD OF THE EXPONENTIALLY  
CORRELATED GAUSSIAN FUNCTIONS (ECG) 

 The stationary Schrödinger equation Ĥ EΨ Ψ=  to be 
solved involves the electronic clamped nuclei Hamiltonian 
(in atomic units)  
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where ri and RI are, respectively, the electronic and nuclear 
coordinates, and ZI are the nuclear charges. In this work we 
shall be concerned with a specific case of systems built of 4 
nuclei with Z = 1 (protons) fixed in a 3-dimensional 
space and 2 spin-paired electrons. We are going to solve 
the Schrödinger equation variationally and our trial wave 
function, Φ, is assumed in the form of a properly sym-
metrized K-term linear expansion in a 2-electron basis  

  1 2 1 2
1

( , ) ( , ).
K

i i
i

cΦ φ
=

=∑r r r r  (4) 

The basis functions employed are the Gaussian geminals 
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each containing 5 nonlinear parameters α1i, α2i, βi, Ai, and 
Bi to be determined variationally. The projector 1 + (12) 
ensures that the wave function fulfills the condition of 
electron undistinguishability, whereas the R̂P  projector 
takes care of the spatial symmetry of the function. The spin 
part of the wave function was integrated out implicitly 
and the only trace it leaves is the + sign in the former op-
erator. 
 The representation of the wave function in the Ritz 
form (4) allows the Schrödinger equation to be converted 
from its differential form to a more tractable matrix form of 
the general symmetric eigenvalue problem (GSEP) 
  ,c cε=H S  (6) 
where the elements of the Hamiltonian and overlap matri-
ces H  and S  are given by  

  ˆ ,ij i jh H dφ φ τ= ∫  (7) 

  .ij i js dφ φ τ= ∫  (8) 

Solving the GSEP gives the linear expansion parameters, 
ci, and the eigenvalues of which the lowest, ε, is of our 
interest. 
 In the framework of the ECG method, most of the com-
putational effort is spent on finding the optimal values of 
the nonlinear parameters. The variational principle ensures 
that for any set of the nonlinear parameters, constrained 
only by the requirement of the existence of integrals (7) 
and (8), the eigenvalue ε is never less than the exact 
solution of the Schrödinger equation, E. This fact gives 
a freedom in selecting an algorithm of optimization. On 
the other hand, there is no definite prescription on how to 
find a global minimum of the multivariable nonlinear func-
tional, ε. In practice then, one has to be satisfied by locating 
one out of many low lying local minima. Taken a 100-term 
wave function of 2

4H +  by way of example, the energy 
minimum is to be located in a 900-dimensional space of 
nonlinear parameters. In our approach, coded in a program 
GEMINI, we employed the Powell’s Conjugate Directions 
algorithm [12] combined with a random generation of 
the starting parameters. For the 2-electron systems, the op-
timization procedure [6, 10], although time consuming, is 
capable of giving the energy value accurate to a fraction of 
microhartree and, in particular cases, even of nanohartree 
[6, 9, 13, 14]. 
 For the 100-term wave function mentioned above, 
the energy is evaluated ca. 105 times during the whole opti-
mization process. For this reason, high efficiency of the 
energy evaluation is a central programming issue. One way 
to speed up the computation of this iterative process is 
through employing the so-called updating which relies on 
a partial utilization of the results computed in the previous 
iteration. More details on the updating algorithms applied 
to the evaluation of the energy can be found in Refs. [15- 
-17]. Another way of speeding up the computations is their 
parallelization. For instance, the process of building 
the matrices H  and ,S  because of the mutual independ-
ence of the matrix elements, is an ideal case for the parallel 
computation [18]. Likewise, the stage of solving the GSEP 
can be efficiently parallelized although this is not a trivial 
task [16, 19]. 

 

3. RESULTS AND DISCUSSION 
 We studied the following four highest symmetry con-
formations of the 2

4H + dication: tetrahedral, triangle, 
square, and linear (see Fig. 1). The explicit form of the R̂P  
projector applied for each configuration is shown in 
Table 1. The tetrahedral structure belongs to the Td point 
symmetry group consisting of 24 symmetry elements. In 
this work we lowered the symmetry of the wave function to 
C3v with the elements listed in the table. 
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Table 1. Explicit forms of the spatial symmetry projectors R̂P  
   used for particular conformations 
  Structure R            R̂P projector 

Tetrahedral C3v 
12 13 23120 120

ˆ ˆ ˆ ˆ ˆ ˆ1 P P P P Pσ σ σ+ −+ + + + +  
Triangle D3h 120 120 12 13 23

ˆ ˆ ˆ ˆ ˆ ˆ1 P P P P P+ −+ + + + +  
Square D4h 90 180 270 13 24 12 34

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 P P P P P P P+ + ++ + + + + + +  
Linear D∞h ˆ ˆ1 i+  
 
 The operation P̂ ω±  means a rotation around the main 
axis of symmetry by the angle of ±ω degrees, îjP – rotation 
around a twofold axis of symmetry going through the 
nuclei i and j, ˆ

ij
Pσ  is a reflection in the plane of symmetry 

(see Fig. 1) perpendicular to the line connecting nuclei i 
and j, finally, the î operator is responsible for an inversion 
with respect to the origin of the coordinate system. 
The presence of the projector R̂P  permits not only the 
imposition of a correct spatial symmetry of the wave 

function but also an implicit increase in the length of the 
expansion. 
 Formally, the projector R̂P  acts on the electron coordi-
nates (r1, r2). Practically, this action can be carried into 
effect by multiplying the vectors of Gaussian centers Ai, 
and Bi by matrices representing particular operations of 
symmetry. For instance, a rotation of a center A around 
a symmetry axis by an angle ω can be written as ˆ' .Pω=A A  
Assuming that the axis of rotation lies along the Z-axis of 
the Cartesian coordinate system we can write explicitly 

' cos sin 0
' sin cos 0 .

0 0 1'

x x

y y

z z

A A
A A

A A

ω ω
ω ω

    
    = − ⋅    
        

 (9) 

Analogously, we can represent the remaining symmetry 
operations listed in Table 1 as 

 

Fig. 1. The four conformations of the nuclei in 2
4H ,+  their main elements of the symmetry, and the point 

                                                                  group symbols 
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In general, the projection changes only the Gaussian cen-
ters and retains the overall shape of a basis function, so that 
no new type of integrals is needed. 
 Although 2

4H + contains just two electrons, there are no 
accurate results on this system available in literature. As 
mentioned in the Introduction, there are computations of 
the energy of the 2

4H + system at the HF, MP2, CI, and CC 
levels of theory i.e. by methods of the chemical accuracy 
(~1 kcal/mol) [3, 4]. In our work we used the geometries 
described there as stationary points and obtained from 
CISD/6-311++G(,2pd) optimization. Thanks to the sym-
metry of the considered conformations they can be char-
acterized by just a single parameter, e.g. a distance R 
between the two nearest nuclei. Figure 1 shows the con-
formations and symmetry elements as well as the relevant 
values of R. 
 
Table 2. The energies of the 2

4H +  system in selected conforma-
tions computed by means of the ECG method compared with 
the best previous CCSD estimations [4]. Each geometry is un-
equivocally defined by R – the distance between the nearest  
  protons 

Energy in hartree 
Conformation R/bohr 

ECG CCSD 

Difference
in milli-
hartree 

Tetrahedral (Td)  2.338 !1.0490415 !1.04678 2.26 

Triangle (D3h)  1.227 !1.0418037 !1.04013 1.67 

Square (D4h)  2.254 !1.0167223 !1.01379 2.93 

Linear (D∞h)  2.422 !1.0057903 !1.00477 a 1.02 
a This work, energy computed at the same level of theory as in [4] 

 

 This work is the first attempt to estimate variationally 
the energy of 2

4H + up to the microhartree accuracy. Based 
on our previous experience with the two-electron systems 
like H2, HeH+, and 3H+ [6, 10, 13] we can safely assess that 
our 100-term wave functions yield an upper bound to 
the energy to an accuracy better that 20 microhartree that is 
1-2 orders of magnitude higher than that known hitherto 
from literature. The ECG results are listed in Table 2 
where, for comparison, the CCSD energies of Ref. [4] are 
also given. As shown in the last column of the table, 
the orbital-based computations yield energy with an error 
of the order of millihartree. 

 
4. CONCLUSIONS 

 We described an implementation of the symmetry 
projectors into the ECG methodology. Their presence 
increases significantly efficiency of the computations as it 

implicitly increases the expansion length of the wave 
function. This observation can be illustrated by the fact that 
the number of the components of the projector R̂P  (Table 1) 
correlates with the energy gain obtained with respect to the 
CCSD results given in the last column of Table 2. 
 We supply here the lowest variational energies for 
selected conformations of the test case system, 2

4H .+  How-
ever, with the present capability of our software we are not 
able to characterize the location of the analyzed conforma-
tions on the potential energy hypersurface, which is an in-
teresting issue from the chemical point of view, and we 
limit ourselves to the confirmation of the relative order of 
the conformers on the energy scale. 
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