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Abstract: This paper describes an approach based on Genetic Programming to perform the meta-
modelling of cellular structure properties with in-plane auxetic behaviour. Common procedures to 
design microstructure topologies with complex shape is to use analytical and/or Finite Element (FE) 
models and quantify the variability of their homogenised mechanical properties versus internal cell 
parameters. For the FE case, the large number of computations involved can rule out many approaches 
due to the expense of carrying out many runs. One way of circumnavigating this problem is to replace 
the true system by an approximate surrogate/replacement model, which is fast-running compared to 
the original. In traditional approaches using response surfaces a simple least-squares multinomial 
model is often adopted. The object of this paper is to extend the class of possible models considerably 
by carrying out a general symbolic regression using a Genetic Programming approach. The approach 
is demonstrated on the optimisation of the unit cell of centresymmetric auxetic cellular solids compos-
ing a simply supported plate for maximum central deflection under transverse uniform pressure. 

1. I N T R O D U C T I O N 

Engineering computation has played a larger role compare to a few decades ago. With the 

advances of computer, various engineering computational programs have been developed, 

tailored for different aspects of engineering. Finite Element Analysis (FEA) alongside with 

others has become the essential tools to master. 

Though the computers have made the life of engineers easier, the new challenges of engi-

neering design nowadays are constantly pushed to solve more complicated problems. This will 

lead to the issue when the designs are very dependent to the computational power. While the 

design optimisations are taking too long to perform, engineers and scientists choose for some 

solutions that create a replacement/surrogate model of the simulation or experimental data. 
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This replacement model will be used for the optimisation process, instead of re-generating the 

data from the simulation/experiments upon each optimisation step. The creation of the 

replacement/surrogate model is also known as metamodelling. 

Traditional metamodelling techniques usually involve using a multivariate response 

surface model. The research in this field reached its mature state some time ago, but there 

are some known problems in using these approaches. For example, difficulties with the 

polynomial basis function, problems in trying to fit a highly nonlinear model using response 

surface functions, explosion of coefficients and low extrapolation-abilities. It also requires 

some prior knowledge of the data before choosing the right functions to fit [1]. Overview of 

the state of art metamodelling techniques can be found in [2]. 

Recent findings in metamodelling has developed into techniques that are inspired by the 

natural evolution, which created the most successful and remarkable designs known by 

mankind. Most engineer and scientists prefer to use an algorithm that is extensively proven 

for its reusability and robustness, rather spending time, efforts and money customising the 

data with the chosen functions. This technique, with today 's phrase, it is called evolutionary 

algorithms. Evolutionary algorithms include a few subclasses, such as evolutionary com-

putation, genetic algorithms, genetic programming etc. Evolutionary algorithms were 

proven to have successful results in all types of automated design system [3]. 

In this work, an example of simple analytical optimisation is presented with the use of 

genetic programming as a metamodelling technique. The genetic programming code was 

developed using Java programming language; it is used to fit the structural properties of the 

auxetic honeycomb, which generated f rom [4]. The optimisation routine was taken from [5], 

and is performed in Matlab using Sequential Quadratic Programming (SQP) method. A sim-

ply supported plate made by a cellular structure composed by centresymmetric auxetic grid 

provides the test case considered. Auxetic (i.e., negative Poisson's ratio) materials and 

structures have recently attracted much attention in the research community for their 

unusual characteristics and the fact that auxetic behaviour is often accompanied by 

interesting performance of other multiphysics characteristics. Extended references and 

descriptions on auxetic systems can be found in [6-9]. Centresymmetric honeycomb struc-

tures have been between the first examples of system exhibiting in-plane negative Poisson 's 

ratios. The conventional hexagonal unit cell of a regular honeycomb can be made re-entrant, 

with an internal negative angle, and exhibits lateral expansion when pulled along one 

direction [4, 10]. Re-entrant cell honeycombs are highly anisotropic, but features higher 

Voigt bounds for transverse shear modulus compared their conventional counterpart [11], 

directional band-gaps behaviour in flexural wave propagation cases [11], and strong dielec-

tric anisotropicity that can be used together with the mechanical one to design electro-

magnetic compatibility characteristics in microwave absorbers [12, 13]. 
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The creation of the initial random population is a blind search in the problem domain, 

whereby the birth of each individual is achieved by randomly generating a root node, and its 

subsequent branches. The root node must be chosen f rom the function set, as illustrated in 

Fig. 1, a root node ' + ' has arity 2, with each argument being represented by a connection to 

a subsequent node. It is then randomly combined with other nodes f rom either the terminal or 

Fig. 1. Creation of individual of 
initial population 

There is however one rule to obey: each function must be applicable to any values returned by 

other functions and any values carried by the terminal nodes. 

(2) 

(1) 

where F and T represent function sets and terminal sets respectively; M and N are the number 

of functions and terminals included in the GP. Each function f i takes in a specific number of 

arguments - the number also known as the funct ion ' s arity, while the terminals have null arity 

2 . G E N E T I C P R O G R A M M I N G T H E O R Y 

As mentioned above. Genetic programming is a subclass of evolutionary computation 

techniques, however unlike other evolutionary techniques that evolve numerical values, it 

evolves functions as a solution for a given problem. 

Genetic Programming (GP) shares the same concepts as the well-known Genetic Algo-

rithm (GA) but increases the complexity by allowing the structure of the solution to undergo 

adaptation. The structure is typically a hierarchical computer program or mathematical 

function of dynamically varying size and shape. 

GP starts with an initial population of randomly generated individuals, which consists of 

function and terminal nodes appropriate to the problem domain. The appropriateness of the 

functions are less strict than the traditional metamodel , as it is jus t to decide if the function 

used would be arithmetical, logical etc., one can even use some user-defined functions that are 

suitable for the problem domain. Therefore, depending on the problem domain, the individuals 

may be real, complex, vector, symbolic, multiple valued etc. 

Each individual is built f rom repeatedly combining all possible functions and terminals: 
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function set. If a terminal node was chosen, it will stop branching out; else the growth will 

continue. The individual created from Fig. 1 represents an expression of (x · y) + z. 

There are a few growth strategies, namely full method, grow method and ramped half-and-

half [14] The full method of generating the initial population involves creating individuals that 

grow up 'til the maximum allowable level. The grow method involves creating individuals 

that are variably shaped, whereby the depth can be of any level less than or equal to the 

maximum allowable level. The ramped half-and-half is a mixture of both. The grow method is 

adopted in this work. 

To prevent the individuals from growing infinitely, a limit was enforced on the depth of 

the tree structure and on the total number of nodes a tree can have, after which only terminal 

nodes are chosen. Some other bloat (i. e. rapid increase of individual tree size) control methods 

can refer to [15, 16]. 

The driving force of GP, as for GA, is by computing the fitness of the individuals before 

'mating' them to produce subsequent generations. Each individual in the population is 

measured in terms of its performance merit, known as the fitness measure. There are several 

ways of assigning a fitness measure based on different problem domains. [14] The fitness 

measure enables the best individuals to be chosen to inherit across the generations, and 

eliminates the unfit ones. The fitness of an individual in this work is assigned by the inverse of 

its percentage Mean Square Error (MSE): 

(3) 

the desired and estimated output respectively. Generally, a fitness of 10, in another words an 

MSE percentage of 0.1, is considered as an excellent fitness. 

At each generation, genetic operators are applied to modify the individuals to create 

offspring. The genetic operators are crossover and mutation. The GP has to go through the 

population to select the 'good/fit ' parents, based on their fitness measure, in order to perform 

the genetic operations. There are several selection methods, like the GA, this work adopted 

fitness proportionate selections, others include Stochastic sampling with replacement, Stochas-

tic sampling with partial replacement, Stochastic universal sampling [17] etc. 

The fitness proportionate scheme works as a spin of a roulette wheel, the accumulative 

sum of the fitness over all individuals in the current population is determined. The individuals 

are then mapped one-to-one into adjacent intervals in the range [0, sum total]. The size of each 

individual interval corresponds to its fitness value. A random number is generated in the range 

of [0, sum total] and the individual whose segment spans the random number is then selected. 

The process is repeated until the desired number of individuals has been selected [17]. 

where N is the number of data points, is the variance of the desired output, y i and are 
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The crossover operation in GP brings variation into the population by producing offspring 

that inherit parts of each parent. As for the mutation, unlike the GA, the GP mutation opera-

tion is to randomly substituting a branch of expression, and often gives more constructive 

modification [18] than the GA mutation. 

There are different crossover and mutation strategies, such as two-parent-one-child, two-

parent-two-children crossover, size fair crossover [19], branch mutation, node mutation etc. 

The genetic operators adopted for this work are two-parent-two-children crossover and a 

mixture of branch and node mutation. 

Fig. 2. Two-parent-two-children cross-
over method 

As shown in Fig. 2, a two-parent-two-children crossover has taken place. A random node 

will be chosen f rom each of the parent, and the process is jus t to swap the two chosen node 

and its subsequent branch f rom one to the other. In Fig. 3, a branch mutation has taken place, 

whereby a random node is chosen f rom one parent, the node and its subsequent branches will 

be replaced. A node mutation is far simpler; it is just to substitute the randomly chosen node. 

However, one must take great care of the compatibility of arity between the original and 

replacement nodes. The mixture of mutation strategies used in this work is namely branch 

Fig. 3. Branch mutation method 



174 
T. L. Lew et al. 

replacement, branch insertion, branch chopping and node mutation. For methods used by other 

GPs, one can refer to [1, 20-23]. 

3. SURFACE FITTING USING GENETIC PROGRAMMING 

The structural moduli of hexagonal honeycomb were simulated from analytical model in [4]. 

(4) 

(5) 

(6) 

(7) 

(8) 

where 

and subscript 1 and 2 are directions, as shown in Fig. 4. 
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From the a b o v e equations, the funct ions can be s impl i f ied in the form of: 

( E 1 , v 1 2 , E 2 , v 2 1 , G 1 2 ) = f(α,θ). 

There fore the terminal set and function set can be def ined as: 

T = {θ,α,R}, 

F = {+, -, ×, ÷, s in, cos , p o w e r , l o g } , 

wi th the assoc ia ted arity n u m b e r s b e i n g {2, 2 , 2 , 2 , 1 , 1 , 1 , 1 } respec t ive ly . 

Fig. 4. Classical hexagonal 
honeycomb configuration with 
variation of θ 

The GP code w a s f irst tested with the E 1 data and v 1 2 data with 10000 generat ions and 5 0 0 

individuals conf igured for E 1 and 1 0 0 0 0 generat ions and 100 individuals for v12. The GP w a s 

initially structured to h a v e only branch mutation, two-parent-two-children crossover, maxi-

mum a l lowable nodes and m a x i m u m a l l o w a b l e leve l s w a s set as 50 and 10 respect ively . As i t 

Fig. 5. (a) Comparison between GP-fitted E1 with theoretical equation, (b) Comparison between 

GP-fitted v12 with theoretical equation 
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was at the beginning of the GP development, the test run was performed as trial and error, in 

another words, the crossover rate and the mutation rate was set purely based on the judgement 

of the researcher. In this case, the crossover and mutation rates were set as 0.6, 0.5 for E1 and 

0.5, 0.5 for v12. 

The test of the GP code was proven to be successful. Figure 5 shows the fitness of GP 

model compares to the analytical equations: E1 and v12 both gives a fitness of 6.95 and 17.18 

respectively. Figure 6 illustrates the tree representation of the analytical solution of E1 and v12 

in comparison with the GP fitted model; it shows that within a predefined range of interest, the 

GP models are much more compact compare to the analytical ones. 

Fig. 6. (a) GP-fitted result of E1 in tree representation, (b) GP-fitted result of v12 in tree representation, 
(c) Original model of E1 in tree representation, (d) Original model of v12 in tree representation 
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As the GP development has become more mature, subsequent data (E2, v21, and G12) were 

trained only at 2000 generation with 300 generation, while the crossover and mutation rates 

were determined by sweeping through all the combinations between 0.1 to 0.9, with each 

combination being iterated 10 times. The mutation method for E2, v21, and G l 2 were also 

modif ied to contain more varieties, i.e. for each mutation rate, it consists of 50% branch 

replacement, 30% of branch insertion, 10% of branch chopping, 30% of function node muta-

tions, 10% of terminal node mutations. 

Figure 7 shows the best fitness of all combinations for E2, v2 l , and G12 . The GP fitted 

models for each of these datasets were determined by the highest fitness GP model , as listed in 

Table 1. 

Fig. 7. Best Illness from the every combination of 
crossover and mutation, (a) E2, (b) v21 (c) G12 

Table 1. List of best configuration for E2, v21 and G12 
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Fig. 8. (a) Optimisation region on E1/Es. (b) Optimisation region on v12/Es.(c) Comparison between 
GP-fîtted E2 with theoretical equation, (d) Comparison between GP-fitted v21 with theoretical equation, 
(e) Comparison between GP-fitted G12 with theoretical equation 

The fitnesses of these GP model compares to the empirical equations are illustrated in 

Fig. 8. The shaded areas exhibit auxetic properties, and are used for the optimisation studies, 

which will be discussed later. 

4 . O P T I M I S A T I O N C A S E S T U D Y 

An example of a special orthotropic plate optimisation is illustrated as an application of the 

GP metamodel . The analytical calculation of the optimisation routine was done by Sequential 

Quadratic Programming (SQP) [24]. 
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Fig. 9. Displacement of auxetic honeycomb 

plate 

Fig. 10. Illustration of the plate displacement objective function with respect to the microstructure design 

parameters, ' o ' indicates successful optimization solution 

(9) 

w h e r e 
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Figure 9 featured the plane stress optimisation example : A square plate s imply-supported 

on all s ides w a s m a d e us ing periodical auxetic hexagonal h o n e y c o m b microstructure as 

descr ibed in the last section. A uni formly distributed load q0 = 100 N w a s applied on the top 

sur face. The displacement function of the plate ω is descr ibed as [5, 25] : 
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