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Abstract: This paper presents a study of the implications of using auxetic materials in the design of 
smart structures. By using auxetic materials as core and piezoelectric actuators as face layers to provide 
control forces, the problem of the shape control of sandwich beams is analyzed under loading conditions. 
The mechanical model is based on the shear deformable theory for beams and the linear theory of piezo-
electricity. The numerical solution of the model is based on superconvergent (locking-free) finite ele-
ments for the beam theory, using Hamilton's principle. The optimal voltages of the piezo-actuators for 
shape control of a cantilever beams with classical and auxetic material are determined by using a genetic 
optimization procedure. Related numerical solutions of static problems demonstrate the role of auxetic 
material in the deformation, shape control and stress distribution of the beam and related two-
dimensional composite elastic structures. 

Key words: Auxetic materials, smart beams and plates, shape control, finite element analysis, genetic 
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1. INTRODUCTION 

Due to the increasing demand of high structural requirements, the modelling and control of 

flexible structures have received considerable interest among the research community. Re-

cently, considerable attention has been focused on the development of advanced structures 

with integrated distributed control and self-monitoring capabilities. These structures are 

frequently classified as smart or intelligent structures (see [1]). The smart structures are 

primarily employed to control the static and dynamic responses of distributed parameter 

systems operating under variable service conditions. Piezoelectric materials used as sensor or 

actuator elements in smart structures. These materials respond to mechanical forces and 

generate an electric charge. Relatively fewer investigations have been done on the shape 

control resulting from bending, despite its practical importance (see [2-4]). Readjusting the 

shapes and the focal points of space antennas or the contours of aircrafts, space-crafts, and 

ship surfaces are some examples requiring structural shape control. In designing smart struc-
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tures integrated with piezoelectric actuators, engineers have to select the appropriate type of 

actuators, their locations on the structure, and the amount of actuation energy to be applied to 

the actuators. A recent review article by Irschik [5] describes relevant applications of static 

and dynamic shape control of structures by piezoelectric actuation. In situations where one is 

dealing with share deformable beams the effect of transverse shear deformation is significant 

and it may be necessary to use the more accurate shear deformation (Timoshenko) beam 

theory. In our previous work [6], a detailed shear-deformable mechanical model was formu-

lated for a sandwich beam with face piezoelectric layers using a superconvergent finite 

element formulation, following the work of Friedman and Kosmatka [7], and Reddy [8]. The 

purpose of this paper is the application of this model to shape control of beams with classical 

and auxetic material. The materials with a negative Poisson's ratio are called auxetic materi-

als. A large number of recent articles discuss their origin, methods for their numerical model-

ing at a structural or microstructural level and their potential applications. The reader may 

consult, among others, the papers [9-12] and the references given there. The purpose of this 

paper is to present a concrete application on a shape control problem for a beam with auxetic 

core and, by means of simplified numerical results, demonstrate possible aspects of using 

auxetic components in smart elastic structures. Extension to further multifield or dynamical 

problems will be the subject of a future investigation. 

The shape control problem is formulated in the framework of structural optimization, as a 

least square optimization problem. The numerical solution within MATLAB is based on the 

genetic algorithm developed by Houck's et al. [13]. 

An elastic beam with rectangular cross section having length L, width b and thickness h is 

considered. A pair of piezoelectric layers with thickness hS and hA is symmetrically perfectly 

bonded at the top and the bottom surfaces of the beam, as shown in Fig. 1. 

2. THE MATHEMATICAL MODEL 

Fig. 1. A sandwich beam with face piezoelectric 
layers 
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2.1. Kinemat ics a n d piezoelectric equat ions 

A Cartesian coordinate system (x, y, z) is defined on the sandwich beam, where the x axis 

coincides with the centroidal axis of the beam and y and z coinside with the principal axes of 

the cross section. It is further assumed that the centroidal axis coincides with the elastic axis of 

the beam so that bending-torsion coupling is negligible. Moreover, the analysis is restricted to 

the behavior in the x-z plane only so that the displacement relations in the x , y and z directions 

can be written as (Timoshenko's beam theory): 

(1) 

where w is the transverse displacement of the points of the centroidal axis and ψ is the rotation 

of the beam cross section about the positive y-axis. The nonzero strain components of the 

beam are determined by using the Eq. (1) as 

(2) 

(3) 

(4) 

where {σ} is the stress vector, {ε} is the strain vector, {D} is the electric displacement vector, 

{E} is the electric field vector, { Q } is the elastic constant matrix, [e] is the piezoelectric 

constant matrix and [ ] is the dielectric constant matrix. Equation (3) describes the converse 

piezoelectric effect and Eq. (4) describes the direct piezoelectric effect. The direct relationship 

is employed in the modelling of the sensing capabilities of the piezoelectric layer whereas 

actuator interactions are modelled by using the converse relationship. 

By assuming that each layer of the sandwich beam possesses a plane of material sym-

metrically parallel to the x-y plane, the constitutive Eqs. (3), (4), under the kinematical as-

sumptions (1), can be written for each layer as 

(5) 

(6) 

where the 

Generally, the linear piezoelectric coupling between the elastic field and the electric field with 

no thermal effects can be expressed by the following constitutive equations (Tiersten [14]) 

are the reduced elastic constants of i-th layer: 
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2.2. Equat ions of mot ion 

The equations of motion of the sandwich beam are derived from the Hamilton's principle: 

(7) 

where δ(·) denotes the first variation operator, T is the kinetic energy, H is the electric 

enthalpy and We is the work done by the external forces and moments. 

The kinetic energy of the beam, by using the Eqs. (1), (2) and integrating over the total 

cross-section of the structure, can be written as 

where 

(8) 

(9) 

are the linear and rotatory inertia coefficients of the total cross-section S of the beam, respec-

tively. 

The electric enthalpy of the beam (see, for example, [14, 15]), by using the Eqs. (1 ,2) and 

integrating over the total cross-section S of the beam, can be written as 

(10) 

with 

(11) 

Furthermore, E ( i ) denotes the Y o u n g ' s modulus, v ( i ) is the Poisson's ratio and G ( i ) is the shear 

modulus of i-th layer. 
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(12) 

(13) 

(14) 

where, (EI) and ( G A ) are the generalized elastic constants of the sandwich beam, Me l and Qe l 

are the electric bending moment and electric transverse shear force per unit length, respec-

tively, both induced by the actuator face, SA denotes the area of the actuator's cross-section 

and 

(15) 

is the shear correction factor [16]. 

Finally, the work of external forces is given as 

(16) 

where q and m are the distributed forces and moments along the length of the beam. 

The two differential equations of motion and the associated boundary conditions are 

obtained by substituting Eqs. (8), (10) and (16) into Eq. (7) and integrating by parts, that is 

(17) 

(18) 

where the geometric and natural boundary conditions that must be specified at the ends of 

the beam (x = 0, L) are 

Geometric 

ω is specified or 

Natural 

(19) 

ψ is specified or (20) 



152 E. P. Hadjigeorgiou and G. E. Stavroulakis 

2.3. Fin i te e lement f o r m u l a t i o n 

Consider a beam element of length Le which has two mechanical degrees of freedom at 

each node: one translational degree of freedom w1(w2) and one rotational degree of freedom 

ψ1( ψ2), as it is shown in Fig. 2. 

Fig. 2. Beam element 

(21) 

(22) 

where H i

ω is a cubic shape function and H i

ψ is a quadratic shape function. Thus lead to a 

two-node, with two degree of freedom per node, Timoshenko beam element which is impervi-

ous to shear-locking, and it is called superconvergent element [7, 8]. The dynamic matrix 

equation of the beam element are developed by substituting the displacement distribution 

(Eq. 22) into the Hamilton's principle (Eq. 7) and by carrying out the integration over the 

beam element length is formulated as 

(23) 

where [ M e l ] is the mass matrix, [K e ] is the stiffness matrix, { F } is the consistent force array 

and { F e l } is the electric force array. 

By assembling all the elemental equations one gets the global dynamic equation 

(24) 

The array of nodal displacements and rotations is defined as 

The beam element's transverse deflection and rotation are approximated by 



The Use of Auxetic Materials in Smart Structures 
153 

3. SHAPE CONTROL AND GENETIC OPTIMIZATION PROCEDURE 

For static problems, like in the shape control studied here, the state vector X of the system 

is time-independent. Consequently, the equation of motion, Eq. (24), takes the simplified form 

[K ]{X} = {F} + {Fel }. (25) 

With fixed, time-independent, value of the electric potential at the various actuators, one is 

able to control the shape of the composite smart beam. For instance, the partial or total alle-

viation of the deflections caused by an external loading is possible by this way. The most 

general problem of optimal shape control of smart beams involves the definition of the num-

ber, position and actuation voltages of the actuators such that the beam's deflections to take 

given values. Shape control problems can take the form of an optimization problem as 

follows: A given mathematical model of the system is defined and a set of input-output data 

for this system is available (parametrized mechanical problem), but the values of the parame-

ters, which are involved in the system, are unknown (design or control problem). In the 

particular problem, each one of the actuators is considered as a separate design parameter 

which is the applied voltage. The minimization of the beam's deflections is the optimal design 

task and is equivalent to the minimization of the error function between output (mechanical 

response) and wished values. For the most common Euclidean norm this is a least square 

optimization problem. Here for simplicity, it is assumed that every actuator covers exactly 

the length of one finite element. A general purpose numerical algorithm for the solution of 

theoptimal shape design problem is the genetic optimization procedure (see [13] where 

the MATLAB code used in this paper is available). In the framework of the genetic optimiza-

tion, the set of the unknown variables of the problem (cf. phenotype) are encoded as a chain of 

binary variables (cf. chromosomes). Furthermore, due to the stochastic nature of this ap-

proach, a population of test value of variables is assumed. For each set of values of the design 

variables, an error function is calculated. Each of this set constitutes an individual in this 

population. In accordance with the terminology used in genetic optimization, the minimization 

problem is transformed into a maximization problem for a suitably defined fitness function. 

The procedure is further partially inspired by Darwin's rule of the survival through natural 

selection. In the selection step individuals with better fitness values are given a higher 

probability to be mated and pass on their characteristics to the next generation. A crossover 

operator permits parts of the encoding string of the parents to be exchanged within the 

reproduction step. Finally, arbitrary parts of the information are changed at random (mutation) 

during the creation of the new generation. Sometimes, very good individuals are allowed to 

pass through the whole procedure unchanged (elitism), i.e. they are copied as they are in the 

next generation. For the fitness function in the particular problem studied here the most 

beneficial choice has been to use the natural logarithm as a scaling filter. 
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4. NUMERICAL RESULTS, RELATED OBSERVATIONS AND DISCUSSION 

4.1. Shape control o f a sandwich beam 

In what follows, the case of a cantilever sandwich beam which is schematically shown in 

Fig. 3, will be studied. 

Fig. 3. A cantilever beam with 
surface bonded piezoelectric ac-
tuators and x-z plane as bending 
plane 

The core material is made of a graphite/epoxy composite material and the face material are 

PZT piezoceramic. The adhesive layers are neglected. The material properties are given in 

Table 1. 

The beam has length equal to 300 mm, total thickness equal to 9.6 mm, width equal to 

40 mm, and thickness of each piezoelectric layer equal to 0.2 mm. The sandwich beam has 

clamped end at the left hand side and is subjected to a fixed point loading equal to 5 N at 

the free right hand side. The beam is divided evenly into 30 finite elements. All the piezo-

ceramics on the upper and lower surfaces of the beam are used as actuators. Equal-amplitude 

voltages with an opposite sign are applied to the upper and lower piezoelectric layers 

respectively in order to control the deformation of the beam subjected to the concentrated 

load. The same example has been used in our previous investigation with classical core, see 

[6]. In the present paper the effect of auxetic core is investigated. 

Table 1. Material properties of face and core materials 
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4.1.1. Consequences of auxetic materials to shape control 

In order to investigate the effect of an auxetic material on the shape control of the beam, 

two sandwich beams are considered: one with classical core material (having positive 

Poisson's ratio equal to v = 0.3) and a second one with auxetic core material (having negative 

Poisson's ratio with a value of v = -0.7) . The deflection curves of these beams due to the same 

external loading with no activated actuators are shown in the Fig. 4. From Fig. 4 one may 

observe that the beam with auxetic core has smaller deflection than the beam with classical 

core material, under the same loading. When the Poisson's ratio of the core approaches the 

value of - 1 , the structure shows a higher resistance to shear because the shear modulus G of 

the material is with the Poisson's ratio, increase [17]. Although the structure with auxetic core 

material becomes stiffer, the electric voltage values of actuators for the shape control differs 

slightly from the corresponding values for the beam with classical core. Relative results are 

shown in Fig. 5. 

Table 2. Shape control of a cantilever beam with optimal values of voltages for the more efficient 
combinations (best fitness value) of the actuator groups. Results obtained with the genetic optimization 
algorithm and a population size equal to 40 
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The numerical performance of the optimal shape control algorithm has been tested with a 

cantilever beam modelled with 30 elements and five groups of actuators from the left side to 

right one. Each element is equipped with a piezoelectric actuator and each group of actuators 

contains six elements with equal actuation electric potential. A maximum number of 100 

generations has been allowed for all examples. It should be mentioned also that an upper limit 

Fig. 5. The centerline deflection of the cantilever beam with two pairs of actuators located at the 
left end and middle span of the beam 

Fig. 6. The centerline of the cantilever smart beam with classical and auxetic core under the 
action all of the five groups of actuators with the optimal values of actuation voltages 

of 500 volts has been considered for all design variables, although this limit has never been 

met in the numerical examples. The optimal values of voltages for the more efficient combina-

tions of actuator groups to shape control of the beam are presented in Table 2. A graphical 

presentation of the these results is given in Fig. 6. 
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4.2. Effect of the auxetic material on static response 

A number of related examples demonstrate the local distribution of stresses related to 

auxetic material. Even in linear elasticity the auxetic effect influences certain components of 

the stress distribution. 

4.2.1. Distribution of stresses from actuator action 

For instance, a slight change of the von Mises stresses at the vicinity of an actuator is 

demonstrated in Fig. 7. This effect, which is expected to become higher for anisotropic materi-

als, may influence quantities which are critical for the strength or the resistance of the 

composite to delamination or damage. 

Fig. 7. Local distribution of action stresses in the core with classical and auxetic material 

4.2.2. Distribution of transverse shear stresses 

In the same spirit the shear stresses of a cantilever beam near the fixed boundary are 

strongly influenced from the auxetic core. The position and sign of the maximum changes, as 

it can be seen from Fig. 8. In order to have an accurate estimate of the shear stresses, which is 

Fig. 8. Distribution of transverse shear stresses in the core of acantilever beam with classical and auxetic 
material 
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not influenced from some simplified assumptions of a beam theory, the results have been 

obtained from the numerical solution of ap lane stress problem with the finite element method. 

4.2.3. Shear deformable plates with classical and auxetic material 

Using the first-order shear deformation theory (Mindlin plate theory) and finite element 

modelling the stress distribution studied in plates with classical and auxetic materials can be 

studied. In this example we consider a quadrilateral plate in bending, with support boundary 

Fig. 9. Dimensions, discretiza-
tion and boundary conditions of 
the plate in bending 

Fig. 10. First-order shear deformation (Mindlin) plate in bending: deflections with classical and auxetic 
material 

conditions at the left and right edges and a uniform distribution of bending moments with 

opposite side at the upper and lower sides respectively. The discrtetization of the problem and 

the boundary conditions are shown in Fig. 9. The shape of the deformation (deflections of the 

plate) is indeed influenced, at it can be shown from Fig. 10. Let us mention that the considered 

problem is a very simple approximation of the plate in bending with an actuator acting in the 

vertical direction of the plate. 
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5. SUMMARY AND CONCLUSIONS 

Based on the shear deformation beam theory and Hamilton's principle, an efficient and 

more accurate finite element model for the shape control of sandwich composite beams with 

classical and auxetic material core and distributed piezoelectric actuators is developed. 

Related numerical results which demonstrate the effect of the auxetic material on static stress 

and displacement distributions are also presented. Within the theory of elasticity further inves-

tigation can demonstrate interface effects in materials with different Poisson's ratio. Further-

more the results of various beam theories, especially concerning the shear stress distribution 

and the transverse curvature, can be compared with the ones of three-dimensional simulations. 

Extensions in dynamic problems and problems of nonlinear mechanics, like strength and crack 

resistance, are beyond the scope of this paper. In particular, we would like to mention here the 

works on wave propagation in structures with auxetic core, see among others [18, 19], and the 

possible beneficial influence of the auxetic core on active control of smart beams and 

structures (cf. our previous work with classical materials published in [20, 21]). Relevant 

results will be published in the future elsewhere. 
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