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Abstract: We investigated the consequences of variable potential softness on elastic properties, using 
the repulsive inverse power potential. With this potential the softness can be changed continuously from 
very soft to extremely steep or hard. An explicit formula for the equation of state is derived and 
discussed. It is shown how this formula can be exploited to determine the infinite frequency elastic 
properties of the inverse power fluid. Explicit formulae for the elastic constants, the high-frequency 
elastic moduli, the longitudinal- and transverse-wave velocities and Poisson's ratio are obtained. Their 
behaviour in the steeply repulsive limit is discussed. It is demonstrated that the softness directly 
determines the Poisson's ratio, and it is shown that in order to decrease the value of the Poisson's ratio 
a harder potential interaction must be applied. 

1. INTRODUCTION 

The softness of particles is an important characteristic which determines various physical 

properties of an assembly of interacting particles. It can be expressed in terms of the interaction 

between pairs of particles, defined usually in the form of an interaction potential, which is often 

"effective". Systems composed of particles of variable softness have attracted considerable 

attention in recent years. Much of this interest derives from the colloid and interface science 

communities, who can make particles of different softnesses for various applications. It is a 

convenient and useful distinguishing feature, as in the area of soft condensed matter the interacting 

units are often "fuzzy" objects. Also, the softness is an important parameter for granular materials. 

The determination of various physical properties of an assembly of interacting particles 

directly from the interparticle forces is a non-trivial task and is still a largely unsolved 

problem, even in the case of model systems of particles interacting with a two-body spheri-

cally symmetric potentials. Such a potential is often the starting point for the description of the 

basic physical system properties of real systems. Among the different model interparticle 

potentials, the inverse-power or soft-sphere potential form seems to be particularly suitable for 

investigating the role of particle softness. First of all it has the simple analytic form, 

(1) 
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where r is the separation between two particles, σ is the particle diameter, ε sets the energy 

scale and n is a parameter determining the potential steepness (the softness is ~ n-1). Thus, 

the single parameter, n, changed continuously can cover a wide spectrum of practically 

important systems from the very soft to the extremely hard, i.e., from the long-ranged 

Coulomb interaction (n = 1) to the hard sphere system Apart from its simplicity the 

inverse-power potential has many features that make this potential attractive as a model 

system. 

From its definition in (1), we see that the inverse power potential is a self-similar function, 

which mixes the energy and distance scales. It can be simply represented as where 

A quite exceptional feature of the inverse power system is that the configurational 

properties of such system do not depend upon the density and temperature separately but upon 

a particular dimensionless combination [1]. In effect the properties computed along one iso-

therm (or isochore) are sufficient to determine the entire phase behaviour. 

Another useful feature of the inverse power potential is the mutual relation between some 

basic physical properties of a system of such particles. For example the pressure and mechani-

cal properties are trivially related to the interaction energy per particle. 

Recently we have shown that the self-similar nature of the inverse-power potential is also 

reflected in the local behaviour of the structural properties [2]. It was shown that the cavity or 

indirect correlation function can locally (in the particle contact region) be well represented by 

a power or algebraic function, and such local scaling relation is obeyed for at least n 18. As 

a result, the equation of state of the inverse power system has been determined for the entire 

fluid phase (as the potential is purely repulsive and no liquid-gas transition exists) for n 18. 

The self-similarity of the soft-sphere potential also has the consequence that uniform 

scaling of the particle co-ordinates does not produce changes in the potential energy landscape 

[3]. Soft sphere potential systems are useful for perturbation theories of fluids where they play 

the role of a reference system. A detailed knowledge of the properties of the inverse-power 

system would facilitate perturbation treatments of more complex molecular systems. Also, 

there is growing interest in colloidal and granular systems, whose particles experience a wide 

range of repulsive interactions. These can be modeled reasonably well by the inverse power. 

Purely repulsive r-n potential systems have been investigated by several authors particularly 

for n = 12 and n = 6 [4-8]. 

Depending on the softness, the r-n system freezes either into the fcc or bcc crystal struc-

ture, and this interesting softness-driven transition has been extensively studied [9, 4, 5, 10]. 

In this work we continue our investigations of the physical properties of the inverse-power 

system. In particular we concentrate on its elastic properties in the fluid phase. The work is 

part of our investigations on the effects of particle softness on elastic, viscoelastic and 

rehological properties of molecular and colloid systems. 

A general equation of state formula and its explicit form is discussed in Sec. 2 and Sec. 3. 

The explicit forms of elastic properties are derived in Sec. 4 and conclusions are in Sec. 5. 
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2. THEORY 

Because of the scaling properties of the r-n potential the excess thermodynamic properties 

can be expressed in terms of a temperature-scaled density where ρ = N/V is 

the number density and β = 1/kBT with kB Boltzmann's constant. Thus, it is possible and conven-

ient to perform calculations in the following reduced units: 

and Also a temperature-scaled packing fraction, is used to 

characterise density of the system. 

As a consequence the equation of state and energy per particle can be expressed in a useful 

form, 

(2) 

(3) 

From the above formulae we can deduce a well known simple relation 

[11]. For the r-n system several other basic physical properties can be expressed in terms of <u> 

or the integral Thus, if we could calculate (ξ, n) we could determine a 

large part of the physical behaviour of the r-n system. 

In what follows we omit the tilde, so keep in mind that we are dealing with temperature-

scaled quantities. 

In a previous work [2] we have shown that the cavity or indirect correlation function, 

y(r) = g(r)exp(βu), can in the particle contact region be well represented by the power or 

algebraic function exp(A)r - C, where A and C are functions of n and ζ and g(r) is the radial 

distribution function. With this analytic form of the cavity function the key integral can be 

explicitly calculated (at least for n 18) and the general formula for (the equation of state) 

energy of the inverse power fluid is, 

(4) 

In the above equation, Γ denotes the Gamma function. In the limit both the A(ζ, n) 

and C(ζ, n) functions have regular (smooth, monotonic, and finite) forms which allow us to 

express the quantity in equation (4) in terms of the hard-sphere equation of state, PHS, namely, 

(5) 

In the above equation, ZHS = PHS/ρ - 1, and δA=A - AHS, where AHS stands for 

For the ZHS, there are several accurate analytical representations available [12], 

for example, the established Carnahan and Starling [13], or that of Kolafa [14] given below, 

(6) 
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(8) 

(10) 

(9) 

terms of the first four virial coefficients and the C-function, without involving any adjustable 
parameters or simulation data [15]. The computed W1 and W2 functions are smooth, monotoni-
cally increasing functions and are very well represented by the following polynomials: 

virial expansion one can write down the W1 and W2 functions in 

The explicit form of the W-functions can be established by exploiting the available 
simulation data and, for the low density region, the virial coefficients are available for the 
inverse power system. Expanding the right had side of Eq. (5) up to ζ3 and comparing with the 

In the above formula the first four terms in the sum (i.e., m = 4) are sufficient to represent 

the simulation data well, practically down to n = 12, in the whole density range of the fluid 

phase. 

For larger n and ζ < 0.3 the linear term (k = 1) is sufficient. It is worth noting that the C 

function occurs in the equation of state formula (5), indirectly, via the argument (C - 3)/n of 

the Gamma function, whose value is close to unity. Thus it is not essential to know the par-

ticular form of the n-dependence of C. In our calculations we have used the following 

coefficients, a1 = 36, a2 = 1400, a3 = 12000, a4 = 62986. 

The n dependence of the δA function is more significant than that of the C function. For 

any n, δA is a smooth, fairly regular function of ζ, and δA(n, 0) = 0 thus, it is plausible to 

consider it to be a polynomial, 

which represents the simulation data particularly well (see Fig. 2 in [17]) if a = 3 is used. With 

this limiting function a general representation of C(ζ , ε) is, 

(7) 

accurate analytical representations has been proposed. Recent computer simulations demon-

strate that the following equation can be derived by [16], 

In this situation, it is sufficient to concentrate on the δA and C functions which determine 

the remaining, soft part of equation (5). These functions have been determined in our previous 

works [2, 15], where it was found that the C function has the useful feature that it is rather 

weakly dependent on n, and for larger n it can be well represented by its limiting form, 

C(ζ, 0). This limiting form, is directly related to the contact values of the deriva-

tives of the hard sphere radial distribution function for which several 
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and the w4k coefficients are 0, -9000, 225600, -1866200, 4150900 and the w5k coefficients are 

-20, 20500, -380400,2212200, -1471100. 

Finally we have obtained an explicit equation of state formula (5) composed of the hard 

sphere part ZHS(ζ) (6), the soft Γ-part, (8), and the soft δA-part (10, 11, 13-15) which gives an 

accurate representation of the equation of state of the inverse power fluid and correctly 

describes its low-density behaviour. 

3. Z(C, e) SURFACE 

The general formula for Z(ζ,ε) in Eq. (5) is a simple product of three distinct and well 

defined parts: (i) the hard sphere equation of state, in this work represented by the Kolafa 

equation, (ii) the Gamma function representing the contribution of the C function, and (iii) the 

exponential of δA, representing the contribution of the A function. The resulting Z(ζ, ε) 

surface is drawn in Fig. 1. The bold line at Z(ζ, ε) is the freezing curve determined by Agrawal 

and Kofke [10], who investigated a very broad range of the softness parameter applying the 

Gibbs-Duhem method. Drawing the Z(ζ, ε) above as well as below the freezing line helps us 

(13) 

(14) 

(15) 

In order to get a more accurate description of softer systems and/or systems in the dense 

fluid region (close to the freezing density) the function, δA needs to be represented by a higher 

order polynomial and the additional W-coefficients can be determined by exploiting 

the available simulation data. We have found that they can be well represented by W3ζ
3 + 

+ W4ζ
4 + W5ζ

5 where, 

(11) 

where w10 = 6.9219, w11 = 22.6574, w12 = -10.1574 and w20 = 10.4067, w21 = 4.4269, 

w22 = 961.6914, w23 = -2678.5. The above more convenient representation of the W1 and W2 

coefficients is utilised in the further considerations. 

The second order approximation for δA yields the equation of state formula, 

(12) 

which describes almost completely the thermodynamic properties of the steeply repulsive 

inverse power fluid. It represents accurately the systems with n > 18 up to ζ ~ 0.4, and 

produces exactly in the low density expansion the first three virial coefficients 
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Fig. 1. The equation of state surface, 
Z(ζ, ε), of the inverse-power fluid, 
Eq. (5). ζ is the packing fraction and 

ε= 1/n is the softness parameter. In the 
figure the freezing curve determined 
by Agrawal and Kofke [10] is drawn. 
Note that the surface is composed of 
two regions defined by positive and 
negative softness "compressibility". 
The bold line is the demarcation or 
maximum line, where the condition 

is obeyed 

density is estimated to be 0.3633.) For increasing packing fraction a negative χ region starts to 

emerge, and for increasing ε occupies more of the fluid range. In fact for a value of ε = 0.03 

(or 32 < n < 33) it extends right up to freezing point. 

For the low packing fractions, the pressure increases as the interaction gets softer, 

suggesting that it is the decay rate of the potential at long distances (r > σ) that dominates 

the pressure in this part of the ζ, ε plane. Clearly as the potential becomes more long ranged it 

includes more of the neighbours, which can contribute to the pressure. In contrast, at high 

packing fraction, the number of interactions is already quite large (for not too larger), and it is 

the short range part of the potential (r < σ) which apparently dominates any trend. As the 

potential gets longer ranged, the contribution to the pressure from close neighbours dimin-

ishes. Hence the pressure decreases as ε increases, below some critical ε at a given ζ. For very 

Let ζM be the value of this maximum backing fraction for a given ε. The demarcation line 

between these two regions is a maximum curve on the Z(ζM(ε)) surface (see Fig. 1). 

The maximum curve is fairly flat for soft systems and rises up considerably for smaller ε. As 

may be seen on the figure, for low packing fractions (ζ < 0.3663) χ is positive for all 

the considered ε. (For the ε 0.08 considered here; for ε = 1/12 the corresponding limiting 

The demarcation line can be determine (at least numerically) from the condition 

which is the maximum condition = 0 for Z( ζ= const, ε). 

visualise some of the general features of the thermodynamically stable fluid phase. From 

Fig. 1 it is clearly visible that Z(ζ, ε) is not a monotonic surface, but contains a fold or is 

composed of two well defined regions. In one region is positive and in the second one 

it is negative. We may also say that there are two regions, characterised respectively by a 

positive and negative softness "compressibility", which we can define via the 

In other words to increase pressure (at a given packing fraction) in the one region we have to 

make the system softer, and to increase pressure in the second region we have to make system 

interaction steeper (i.e., increase n). 
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large n, even at higher packing fractions, the pressure decreases as the interaction becomes 

stiffer, because of the relatively few interacting neighbours. 

In the next Section we discuss how we can build on this treatment of the equation of state 

of the soft sphere fluid to derive relatively simple formulae for the various elastic constants at 

infinite frequency and related properties. 

The (instantaneous) bulk modulus B, is given by 

(23) 

(22) 

(21) 

(20) 

(19) 

(18) 

These formulae apply in the limit of infinite frequency [20]. In deriving the above rela-

tions, central forces have been assumed. This ensures that the expressions satisfy the Cauchy 

relation C44 = (C11 - C12)/2, which reduces the number of independent constants to two. (The 

elastic constants are given in units of ρkBT). The high-frequency elastic moduli (also in the 

ρkBT units) can similarly be written in terms of I1 and I2, as follows, for the infinite frequency 

elastic shear modulus, 

for the high-frequency bulk modulus, 

for the high-frequency dilation modulus, 

For example the above equation of state or compressibility factor is simply, Z = -I1/3. 

The second-order elastic constants in an isotropic medium can be written as 

(16) 

(17) 

4. THE ELASTIC PROPERTIES 

Several macroscopic properties of liquids can be written in terms of two important 

integrals I1 and I2 [18, 19]: 
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(24) 

(25) 

(26) 

(27) 

which can also be written in terms of the I1 and I2 integrals, [19]. 

Thus, the main elastic properties can be obtained knowing the I1 and I2 integrals. At this 
point we note a useful feature of the inverse-power potential, namely for this potential 

I2 = -(n + 1)/I1 = 3(n + 1)Z. In other words, our knowledge of Z(ζ, n) for the soft-sphere fluid 

(see Sec. 2 and 3) is sufficient to obtain explicit formulae for the main elastic properties of the 

inverse-power fluid. Consequently we have the fairly extraordinary and unique situation in 

which explicit formulae for elastic properties are available: 

Fig. 2. The ratio Z/ZHS versus the packing 
fraction for a few different softness 

(28) 

(29) 

(30) 

where S is a constant. Consequently, the Poission's ratio, 

Takeno and Goda [21] have shown that the longitudinal- and transverse-wave velocities 

are related to g(r), du/dr and d2n/dr2 and can be written as, 
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Similarly, its minimum is in the hard sphere limit and we can also increase its value by 

making the system softer. 

5. CONCLUSIONS 

In this work the role of potential softness on the macroscopic properties of an ensemble of 

interacting particles was considered. It was pointed out that a system of inverse power 

particles exhibits several unique features, which make it a useful model system. This system 

exhibits a local scaling of structural properties which in turn allows us to obtain a general 

equation of state formula, Z(ζ, n). Incorporating the first few virial coefficients and computer 

simulation data we have established its explicit form. It was shown how knowledge of Z(ζ, n) 

allows us to obtain explicit formulae for the main elastic properties of the in verse-power 

fluid. For the first time the softness (i.e., 1/n) dependence of the elastic constants, the elastic 

moduli, the wave velocities and the Poisson's ratio have been established. The behaviour of 

elastic constants and the high-frequency modulus is driven by the nZ(ζ, n) term which can be 

approximated by the nZHS in the steeply repulsive limit. For less steep interactions the details 

of the dependence of the Z-surface are important and cannot be neglected, particularly for the 

dense fluid region. For lower packing fractions (ζ < 0.3) the simpler and fairly accurate low 

density equation of state formula (12) can be used. The Poisson's ratio decreases with 

increasing steepness as 1/n and reaches its minimum value 0.25 in the hard sphere limit. 

(33) 

(31) 

(32) 

the hard sphere limit. In order to increase it we have to make the system softer (i.e., decrease 

the n-value). Finally, the Poission's ratio is 

which means that both velocities increase with system steepness as Furthermore, as 

expected, the longitudinal-wave velocity is greater than the transverse-wave velocity, and 

at any ζ and n. Thus, for the harder system or 

The longitudinal- and transverse-wave velocities are 

We have similar behaviour for the high-frequency modulus, 

and 

From the above formulae we see immediately that C11 > C12 > C44, and this condition is 

obeyed for any n. As is shown in Fig. 2, for the softer interactions the details of the Z-surface 

(i.e., its ζ, n-dependence) are significant and should not be neglected. For harder or steeper 

systems (n > 1) the term linear in « becomes dominant 

goes to It is interesting to observe that the ratio υL/υT, is actually at its minimum in 
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Similarly the ratio of the longitudinal- to t ransverse-wave velocit ies is minimum, 

limit. Our considerations demonstrate that one poss ible mechanism to increase the Poisson's 

ratio is enhance the sof tness of the interaction between particles. As a result of our studies the 

main elastic properties of the inverse power f luid have been determined for an appreciable 

range of the steepness parameter, n. It can be used as a bas i s for understanding better other 

molecular systems with a " tunable" softness . 
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