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TWO INTERACTING PARTICLES IN A PARABOLIC WELL:
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Abstract: The quasi-exactly solvable problem of two interacting electrons confined by a parabolic
potential (harmonium) has been generalized for the case of two arbitrary particles. Several new features
of the analytical solutions are presented.

1. INTRODUCTION

Many quantum-chemical methods have been derived in a more or less straightforward way
from analytically solvable models such as the hydrogen-like atom or the harmonic oscillator.
Analytically solvable models supply also invaluable opportunities for checking correctness
and ranges of applicability of a variety of approximations. During the last decade several new
quasi-analytically solvable models have been introduced to quantum chemistry and to atomic
and molecular physics. Probably the most interesting and the best known is the model
describing two interacting electrons confined in a harmonic oscillator potential. It was applied
to numerical studies on electron correlation by Kestner and Sinanoglu already in the sixties
[1]. The analytic solutions have been obtained (independently ofthe earlier works of Singh [2]
and Znoil [3]) by Taut [4]. Later this system, referred to as harmonium, has been used by Taut
et al. as a reference model in studies on density functional theory [5, 6] and by Cioslowski and
Pernal on some aspects of the electron correlation [7]. The properties ofthe energy spectrum
of harmonium have been recently analyzed by the present authors [8, 9]. Some of its features,
just discovered, are reported in this paper. Similar models have also been used to study
properties of quantum dots [10-14]. In this context one should mention works by Ghosh and
Samantha [15, 16] who added an extra linear term to the interaction potential and, in effect,
got one additional coupling constant in the Hamiltonian. This trick leads to a larger set of ana-
lytical solutions ofthe corresponding eigenvalue problem. Generalizations of this approach to
more than two particles constitute a difficult challenge but are by no means hopeless [17, 18].

The two-particle Schrodinger equation describing harmonium as well as its modifications
and generalizations may be separated to two spherically-symmetric one-particle equations, one
of them describing the motion of the center of mass in the confining potential and the other
one describing the relative motion ofthe particles [4]. The center of mass equation, in the case

of a parabolic confinement, reduces to a three-dimensional harmonic oscillator eigenvalue
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problem and is easily solvable. In the equation describing the relative motion, the angular part
of the wavefunction may be separated and expressed in terms of spherical harmonics. Analyti-
cal solutions of the remainig radial equation were obtained, for a discrete set of the coupling
constants defining the effective potential, in the case of the pure Coulomb interaction by Taut
[4] and in the case when an additional linear term appears by Ghosh and Samantha [15, 16].
General methods of solving similar equations, for a wide class of potentials, were formulated
by Singh et al. [2] and by Znoil [3] a quarter of a century ago and recently extended by Bose
and Gupta [19], However, these mathematically oriented works have been noticed by neither
guantum chemists nor solid state physicists. In the present paper we generalize the model of
Taut [4] by introducing an additional coupling constant which describes the strength of
the interaction. Also the method of solving the equation has been formulated in ageneral
form. The recurrent relations which determine the wavefunctions have been transformed to an
easily solvable eigenvalue problem of a symmetric tridiagonal matrix. In effect several new
features of the analytical solutions have been noticed. The inspiration for this work has been
taken from a general approach described in Refs. [2, 3, 19]. Consequently, the method
presented in this paper is also an illustration of a general approach which may be used to
construct analytically solvable models for a large number of interaction potentials.

2. GENERAL FORMULATION

The six-dimensional Schrédinger eigenvalue problem describing two particles with masses
my and my, interacting by a potential V(|ry - r»|) and confined by a harmonic-oscillator-type
potential, i.e.

2 2 2
14 D) - 2 2
—+ +— "+ myry |+ VU = )P, 1) = EY(H, B),
{2’"1 215 5 (11 22) (|1 2|)} (r, 17) (r, 1) ()]

upon the substitution

R =(mn +myry) I[(my +my), and r=r —r,, @

may be separated to two spherically-symmetric one-particle equations:

1 M B _
[_ A 7”21{2}”‘“ (R) = EiZ,p, (R), )
and
| P
- %VT + _2-60 re+ V(l) anlm (l‘) = Enl(pnlm(r)’ (4)
where
l//(l'] ’ 1‘2) = E\'}\[J (R)@nlm (")’ E= E\{il + EIIJAI’ (5)

M=m;+ m,and m = mm/M.
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The center of mass equation, (3), corresponds to a three-dimensional harmonic oscillator of
the mass M and its solutions may be found in all textbooks of quantum mechanics. Equa-

tion (4) describes the relative motion. Due to its spherical symmetry
1 . »
(pnlm (r)= _’— O (r )Ylm ), (6)

where /, m are the angular momentum quantum numbers,Y[,,,(r) are spherical harmonics, and
n = 1,2, ... numbers consecutive energies for a given /. If we set, for simplicity, m, = m, = 1
then m = 1/2 and the radial equation reads

I+ 1)

d’ 1 .
- d 2 9 + Zw?.r?_ + V(r) ¢nl (I‘) = E,,/¢,,[(")- (7)
T r-

Equation (7) may be solved numerically, to practically unlimited accuracy, for all potentials V
which are sufficiently regular and for which bound-state solutions exist. However, for a num-
ber of potentials V it may also be solved analytically. In this work we limit the discussion to

the case of Coulomb-type potentials.

3. THE COULOMB POTENTIAL

IfV(r) = 1/r, the properties of Eq. (7) were discussed in detail in the literature [1, 4-7] and
the corresponding system is referred to as harmonium. By taking V(r) = £/r one may extend
the range of systems described by this model. For example, £ = -1 may correspond to a con-
fined hydrogen atom or muonic atom (if m, m,) or to a confined positronium (if m, = m,
= 1) [9]. Besides, by adding an additional coupling constant we can get a deeper insight into
the structure ofthe analytical solutions.

Upon the substitution
p =Jor, ®)

Equation (7), with V = T/r, becomes

2 W+) 1, s, .
Sttt =p +— ;1 :£n ;1 9
{ dpz p2 4P P 0, (P) D (P) )

where

s=—=, and ¢, =E)jo. (10)

In this section we present a general method of finding the analytical solutions of Eq. (9). The
method has two advantages: it may be easily generalized for a large set of the interaction

potentials V and it utilizes only standard computational techniques of linear algebra.
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The asymptotically correct solutions of Eq. (9) have the form

—p? S
¢ (p)=ple P PSP (p),

where P& (0) has to be finite and

lim ¢,,(p) =0
p—dee
We are looking for the analytical solutions (11) with

p
PSP (p) =Y ap’.
i=0
By substitution of Egs. (11) and (13) to Eq. (9) we get

Aia; + B + Cipgayy =0, 1=0,12,.., p-1

(11

(12)

(13)

(14)

(1)

where
A4, =g, —-i-1-3/2
B, =-s
C, =ii+2/+1).
Ifa, =0 but Gpr1 = Gpsa = ... = 0 then, according to the recurrence relations (14), A, = 0, i.e.

g, =p+I1+3/2

and, consequently,

4 =w(p-i).

Non-trivial solutions of Eqgs. (14) exist if

By, ¢, 0 - 0

A4 B G

0 4 B, - 0 0

WI7 =
0o 0 0 A,,_2 B
0 o0 0 A

The determinant fulfills recurrent relations
WO = Bo,
Wy = BiW, — 4,Cy,

Wi = BiWi—l — A,-_]CiWi_z, i= 21 3:"',[7

which make its evaluation very simple.

(16)

(17)

(18)

(19)
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The determinant W, depends on the indices i, p, / and on the parameter s. Therefore, for
given / and p, Eq. (18) determines a discrete set s = s,(/, p), i = 0, 1, 2, ... , p for which
the analytical solutions of Eq. (9) exist. The energies corresponding to the analytical solutions

may be expressed as
Ey = o;(, p)p +1+3/2),

where , (I, p) = £/s, (I, p)* and n is a function ofp and i.

4. TRANSFORMATION OF THE RECURRENT RELATIONS

It is convenient to transform Eqgs. (14) to an eigenvalue problem of a symmetric matrix.

Let
o; = a;lq;. (20)
Then Egs. (14) may be rewritten as
Byory + Gy = 0
B N N 0o 104 1)
A,-(X,-+Bi+]a,»+]+ci+206i+2 :0, I:0, 1, 2,...,p—1,

where 4; = piﬂA,-qi,Ei = p;B;g; and E,-H = P;Ci 19,41+ As one can easily see, ifwe set

po=1 p= 1, & BHP‘ 1 (22)
3 i i
4 B

and
A._, B;
= 1’ = =l Zisl . 23
do g; C,' B,' qdi-1 ( )
then
~ Ciuds
— = D. B i+14% 24)
+1 +1 0 3
' l ' B B;
and
B,y = By, (25)
where we used the relation
BO
big; = E_‘Po%- (26)

1
Consequently, Eq. (18) may be transformed to an eigenvalue problem of a symmetric

tridiagonal matrix

(T+ B,Na =0, 27)



72 J. Karwowski and L. Cyrnek

where I is a unit matrix, -B, stands for the eigenvalue,

Ty = DiiOp vt + Dysiby s 6 k=0,2,...,p, (28)
and o = {q, a,,..., a,}. The secular determinant is related to Was
del| T+ ByI|=C™'W,, 29)
where
C= H pidi = [] BI;‘: (30)

5. THE ANALYTICAL SOLUTIONS

The procedure described in the previous section is quite general and may be applied to
an arbitrary three-term recurrent relation. If the confined particles are described by Eq. (9)
then, according to Eqgs. (15), (17) and (24),

By ==s, D; = i(p—i+1)(i+20+1), 31)

and the secular equation may be written as

-s Dy O 0
DI -5 D2
¢ D, -s .. O 0
det|T - 51| = ‘ =0. (32)
0 -5 D,
DI, —S

The eigenvalues s determine the conditions for the coupling constants ¢ and @ under which
¢ °(p)given by Eq. (11) is a solution of Eq. (9). Since p may be an arbitrary non-negative
finite integer, the discrete set of values of i for which Eq. (9) may be solved analytically is
arbitraily large, though finite. Solutions of Eq. (32) and the corresponding energies, for / = 0
and p < 11, are collected in Table I.

The sign of ¢ is the same as the sign of s [cf. Eq. (10)]. Therefore s < 0 corresponds to
the confined positronium and s > 0 corresponds to harmonium. The case of s = 0 corresponds
to the spherical harmonic oscillator. The spectrum of T'is symmetric, i.e. if So< 8 < 83 <...<5,
thens, = -s_, j= 1,2, ..., (p + 1)/2. Since 0 = (&/s)*, it is the same for the positive and for
the negative s. Therefore the energies which correspond to the cases analytically solvable, for

given / and p, are the same for harmonium and for the confined positronium. A plot of spectra
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of harmonium (£ = 1) and of the confined positronium (§ = -1), versus log w, is presented in
Fig. 1. The spectra are scaled by the excitation energy to the 10th excited state of the confined

positronium, i.e. the quantities plotted are equal to

_En-E”

Ay =—N "1
N . )
pS _ pcps
Egy —E

(33)

where the superscript cps refers to the confined positronium and E, is the energy of the Nth
energy level of either harmonium or confined positronium. The energies have been obtained
by a numerical integration of Eq. (9). The regularities in the distribution ofthe crossing points

which may be seen in Fig. 1 are also illustrated in Tables 2 and 3. The values of w

Table 1. Values ofs = £ (under assumption of @ = 1) and of 1/5° = @ (under assumption of & = 1)
for the confined postronium (cps) and for harmonium (hrm) in the case of / = 0; N denotes
the consecutive number ofthe energy level ofthe pertinent system (N = 1 stands for the ground state,
N = 2 - for the first excited state, etc.). In the last column the corresponding energies are displayed

7 System N C(w=1) o (=1 BT,
1 cps 2 -1.4142135623731 0.5000000000000 1.2500000000000
hrm 1 1.4142135623731  0.5000000000000 1.2500000000000
2 cps 3  -3.1622776601684 0.1000000000000 0.3500000000000
2 0.0000000000000 arbitrary -
hrm 1 3.1622776601684 0.1000000000000  0.3500000000000
3 cps 4 -5.2315692556682 0.0365372655993 0.1644176951967
cps 3 -1.6219380762369 0.3801294010674 1.7105823048033
hrm 2 1.6219380762369 0.3801294010674 1.7105823048033
hrm 1 5.2315692556682 0.0365372655993 0.1644176951967
4 cps 5  -7.5927270006113 0.0173462032222 0.0954041177220
cps 4 -3.5143273459067 0.0809684035194 0.4453262193567
3 0.0000000000000 arbitrary
hrm 2 3.5143273459067 0.0809684035194 0.4453262193567
hrm 1 7.5927270006113 0.0173462032222 0.0954041177220
5 cps 6 -10.2176937143200 0.0095784280156 0.0622597821011
cps 5 -5.6926771788333 0.0308579369294 0.2005765900409
cps 4  -1.7866621667052 0.3132673387588 2.0362377019320
hrm 3 1.7866621667052 0.3132673387588  2.0362377019320
hrm 2 5.6926771788333 0.0308579369294 0.2005765900409
hrm 1 10.2176937143200 0.0095784280156 0.0622597821011
6 cps 7 -13.0836896931990 0.0058417037553 0.0438127781646
cps 6 -8.1436471236368 0.0150786377025 0.1130897827687
cps 5  -3.8076338502751 0.0689746716656 0.5173100374919
4 0.0000000000000 arbitrary
hrm 3 3.8076338502751  0.0689746716656 0.5173100374919
hrm 2 8.1436471236368 0.0150786377025 0.1130897827687
hrm 1 13.0836896931990 0.0058417037553 0.0438127781646
7 cps 8 -16.1725422920744 0.0038233443007 0.0324984265556
cps 7 -10.8466887415847 0.0084997400645 0.0722477905482
cps 6 -6.0900495359691 0.0269623877262 0.2291802956728
cps 5  -1.9260103332246 0.2695769617711 2.2914041750541
hrm 4 1.9260103332246 0.2695769617711  2.2914041750541
hrm 3 6.0900495359691 0.0269623877262 0.2291802956728
hrm 2 10.8466887415847 0.0084997400645 0.0722477905482
hrm 1 16.1725422920744 0.0038233443007 0.0324984265556
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P System N (=1 W (=1 B,
8 cps 9 -19.4695097841489 0.0026380921801 0.0250618757111
cps 8 -13.7826923466140 0.0052641938792 0.0500098418523
cps 7 -8.6296680009879  0.0134280151982  0.1275661443829
cps 6 -4.0625620778327 0.0605898642514 0.5756037103886
5 0.0000000000000 arbitrary
hrm 4 4.0625620778327 0.0605898642514 0.5756037103886
hrm 3 8.6296680009879  0.0134280151982 0.1275661443829
hrm 2 13.7826923466140 0.0052641938792  0.0500098418523
hrm 1 19.4695097841489  0.0026380921801 0.0250618757111
9 cps 10 -22.9623769219761 0.0018965588222 0.0199138676329
cps 9 -16.9355445243392 0.0034865963411 0.0366092615815
cps 8 -11.4111143045907 0.0076796935197 0.0806367819566
cps 7 -6.4426385912978  0.0240919781510 0.2529657705854
cps 6 -2.0482812469742  0.2383531096740 2.5027076515768
hrm 5 2.0482812469742 0.2383531096740 2.5027076515768
hrm 4 6.4426385912978 0.0240919781510  0.2529657705854
hrm 3 11.4111143045907 0.0076796935197 0.0806367819566
hrm 2 16.9355445243392  0.0034865963411 0.0366092615815
hrm 1 22.9623769219762 0.0018965588222 0.0199138676329
10 cps 11  -26.6408261152537 0.0014089793372 0.0162032623777
cps 10 -20.2918044638954 0.0024286149414 0.0279290718265
cps 9  -14.4181055196040 0.0048104266936 0.0553199069762
cps 8 -9.0676588535791  0.0121621303801 0.1398644993717
cps 7 -4.2900876024306 0.0543334996526 0.6248352460052
6 0.0000000000000 arbitrary
hrm 5 4.2900876024306 0.0543334996526 0.6248352460052
hrm 4 9.0676588535791  0.0121621303801  0.1398644993717
hrm 3 14.4181055196040 0.0048104266936 0.0553199069762
hrm 2 20.2918044638954 0.0024286149414 0.0279290718265
hrm 1 26.6408261152537 0.0014089793372 0.0162032623777
11 cps 12 -30.4960000236087 0.0010752618599 0.0134407732483
cps 11 -28.8401464471275 0.0017594711990 0.0219933899875
cps 10 -17.6362253879963 0.0032150573126 0.0401882164078
cps 9  -11.9258755355747 0.0070310381592 0.0878879769895
cps 8 -6.7617284108466 0.0218718014053 0.2733975175658
cps 7 -2.1581185350441  0.2147085853920 2.6838573173995
hrm 6 2.1581185350441 0.2147085853920 2.6838573173995
hrm 5 6.7617284108466 0.0218718014053 0.2733975175658
hrm 4 11.9258755355747 0.0070310381592 0.0878879769895
hrm 3 17.6362253879963 0.0032150573126 0.0401882164078
hrm 2 23.8401464471275 0.0017594711990 0.0219933899875
hrm 1 30.4960000236087 0.0010752618599 0.0134407732483

corresponding to the crossing points in Fig.

1 are ordered according to the values of

N,

h?

N, and

p for 1 _ p_ 20 in Table 2. The corresponding values of the indices (N,, N, p) are displayed

in Table 3. As one can see, if L = 1 then

0<w(N,,
0 <o (N, N, + 1p +
0 <o (N, + I, N + 1 p+2) <o(N,

N,,p)<w (N,

+1,N,p+1)

D<w (N, N, p)

N, p) 05

0.5,
0.5,
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Each of the inequalities links the values of co distributed along a specific line in Fig. 1. In
particular, the last inequality corresponds to the series connected by the dotted lines in Fig. 1

and displayed in the same row of Table 2.

IIRALLY

-35 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5
lg(w)
Fig. 1. Energy levels of harmonium (solid lines) and ofthe confined positronium (broken lines) for / =0

scaled by the excitation energy to the 10th excited state of the confined positronium, versus logw.
The points where the energy levels cross correspond to the analytical solutions of Eq. (9) with T = *£1.
The crossing points are labelled by (N,, N), where N,, N, = 1, 2, 3, .. correspond to the consecutive
number of the energy level in the spectrum of, respectively, harmonium and positronium. The points
corresponding to N, - N, = n, (in Table 2 they are collected in the same row) are connected by dotted
lines (the rightmost line corresponds to n, = 1, and the consecutive ones to n, =2, 3,...

If p is even, i.. the dimension of T is odd, then s/, = 0. This case corresponds to

the unperturbed spherical harmonic oscillator. The well known analytical solutions
POP) o (—pl2,1+3/2,wp%), (34)

where F is the confluent hypergeometric function, contain only even powers of po. Therefore
the case ofs,, = 0 appears for every second (even) value ofp. Let us note that the asymptotic
behaviour ofd),'f, is .y-independent [cf. Eq. (11)]. Therefore the functions d)f,', may always be
represented as linear combinations of ¢,?, and, ¢,?),+] k=0, 1,... ,p/2. In particular for p = 1

K} 0 0
Por ~ o + L+ 20,0141
where o, = 1/[4(/ +1)], and forp =2

91 ~ B0 + AL+ 40,00 11 + 40, (L + 4, )9,

where o, = 1/[4(4] + 5)].
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Table 2. Values of 1000/s? = 1000 x o in the case of /=0 and |¢| = 1 ordered according to N,, N,, and p.

The corresponding values of (N,

N,, p) are given in Table 3

0.1923
0.2232
0.2611 0.2507
0.3082 0.2952
0.3672 0.3509 0.3363
0.4424 0.4216 0.4031
0.5396 0.5127 0.4889 0.4676
0.6675 0.6320 0.6008 0.5732
0.8392 0.7914 0.7498 0.7133 0.6809
1.0753 1.0094 0.9527 0.9033 0.8598
1.4090 1.3155 1.2361 1.1676 1.1078 1.0550
1.8966 1.7595 1.6446 1.5468 1.4621 1.3881
2.6381 2.4286 2.2561 2.1111 1.9872 1.8798 1.7856
3.8233 3.4866 3.2151 2.9905 2.8011 2.6388 2.4977
5.8417 5.2642 4.8104 4.4426 4.1372 3.8787 3.6565 3.4630
9.5784 8.4997 7.6797 7.0310 6.5025 6.0620 5.6879 5.3656
17.3462  15.0786  13.4280  12.1621  11.1544  10.3293 9.6389 9.0509 8.5430
36.5373  30.8579  26.9624  24.0920  21.8718  20.0933  18.6303  17.4015  16.3520
100.0000 80.9684  68.9747  60.5899  54.3335  49.4514 455149  42.2604  39.5163  37.1652
500.0000 380.1294 313.2673 269.5770 238.3531 214.7086 196.0616 180.9066 168.3003  157.6185
Table 3. The indices (N,, N, p) corresponding to the values of w displayed in Table 2
(1,21,20)
(1,20,19)
(1,19,18)  (2,20,20)
1,18,17)  (2,19,19)
1,17,16)  (2,18,18)  (3,19,20)
1,16,15)  (2,17,17)  (3,18,19)
(1,15,14)  (2,16,16) (3,17,18)  (4,18,20)
(1,14,13)  (2,15,15) (3,16,17)  (4,17,19)
(1,13,12)  (2,14,14)  (3,15,16) (4,16,18) (5,17,20)
(1,12,11)  (2,13,13)  (3,14,15)  (4,15,17)  (5,16,19)
(LIL10)  (2,12,12)  (3,13,14) (4,14,16) (5,15,18) (6,16,20)
(1,10,9)  2,11,11) (3,12,13) (4,13,15) (5,14,17)  (6,15,19)
1,9,8)  (2,10,100  (3,1L,12) (4,12,14) (5,13,16) (6,14,18) (7,15,20)
1,8,7) 29,9  (3,10,11)  (4,11,13) (5,12,15) (6,13,17) (7,14,19)
1,7,6) 2,8,8) (3,9,10)  (4,10,12) (5,11,14) (6,12,16) (7,13,18) |[(8,14,20)
(1,6,5) 2,7,7) (3,8,9 (49,11 (510,13) (6,11,15) (7,12,17) |(8,13,19)
1,54 (2,66 (3,78 48100 (5912 (610,14 (7,11,16) |(8,12,18) (9,13,20)
1,4,3) 2,5,5) (3,6,7) 479 58,11 (69,13  (7,10,15) |S,11,17) (9,12,19)
1,3,2) (2,4,4) (3,5,6) 4,68) (57,100 (68,12 (7,9,14) [(8,10,16) (9,11,18) (10,12,20)
1,2,1) (2,3,3) (3,4,5) 4,5,7) (5,6,9) 6,7,11)  (7,8,13)  (8,9,15) (9,10,17) (10:11:19)
Equation (9) for harmonium reads
§ s kY
HO +lp—l ¢nl ,(p)ZEI:}q)leI(p): (35)

where
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> Id+1) 1 ,
Hy=——5+—5++— 36
0 dp2 2 4 Y ( )
and for the confined positronium it is
P A DR .
0 p ¢nl (p) 8n1¢11[ (p)s ( )

with p € <0, «>, If sis chosen to be an eigenvalue of T, i.e. ¢ is an analytical solution (11) of
Eqg. (9), then 8,,+, = g,;. Consequently, by comparing Egs. (35) and (37), we see that

o) =011 (=p). (38)

Then, by taking p € <-oo, o>, Eq. (35) describes both harmonium and confined positronium
with ¢,,", (p) corresponding to harmonium if p> 0 and to the confined positronium ifp < 0.
Equations (35) and (37), with p > 0, may also be expressed as a single two-component

H / + +
0 o Wlil =&y W”_/ 3 (39)
slr HO Yo W

i ~ ol e gl = petg-eapt )
w ~ ol =gl < it pe )

eigenvalue equation:

+ _
where 8nl =&y =&y,

with

Pi(p) = Py(p) + Py(-p)
Bu(p) = PBy(p)— By(=p).

Let us note that P, (o) and P°, (o) are, respectively, an even and an odd polynomial in p.
Hence, if ¢+, may be expressed as a linear combination of ¢,9,, k=0,1,....p/2 then ¢, is

expressible as a linear combination of ¢,(,),+,.

6. CONCLUDING REMARKS

The analytical solutions of the eigenvalue equation of the Schrodinger Hamiltonian
describing two particles confined in a parabolic potential well and interacting by a Coulomb
force exhibit many remarkable properties. By these properties they differ in an essential way
from the other solutions of this equation. In particular, only in the case of the analytical
solutions the transformation p <3 -p corresponds to the transition (harmonium) ¢« (confined

positronium). Also only for the analytical solutions the energy of harmonium and of confined
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positronium is, for a given value of |s|, the same. These properties suggest that the existence

of the analytical solutions is associated with a hidden symmetry of this system.
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