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TWO INTERACTING PARTICLES IN A PARABOLIC WELL: 
HARMONIUM AND RELATED SYSTEMS* 

J a c e k K a r w o w s k i a n d L e c h C y r n e k 

Institute of Physics UMK, Grudziądzka 5, 87-100 Toruń, Poland 

(Rec. 10 November 2003) 

A b s t r a c t : The quasi-exactly solvable problem of two interacting electrons confined by a parabolic 
potential (harmonium) has been generalized for the case of two arbitrary particles. Several new features 
of the analytical solutions are presented. 

1. INTRODUCTION 

Many quantum-chemical methods have been derived in a more or less straightforward way 

from analytically solvable models such as the hydrogen-like atom or the harmonic oscillator. 

Analytically solvable models supply also invaluable opportunities for checking correctness 

and ranges of applicability of a variety of approximations. During the last decade several new 

quasi-analytically solvable models have been introduced to quantum chemistry and to atomic 

and molecular physics. Probably the most interesting and the best known is the model 

describing two interacting electrons confined in a harmonic oscillator potential. It was applied 

to numerical studies on electron correlation by Kestner and Sinanoğlu already in the sixties 

[1]. The analytic solutions have been obtained (independently of the earlier works of Singh [2] 

and Znoil [3]) by Taut [4]. Later this system, referred to as harmonium, has been used by Taut 

et al. as a reference model in studies on density functional theory [5, 6] and by Cioslowski and 

Pernal on some aspects of the electron correlation [7]. The properties of the energy spectrum 

of harmonium have been recently analyzed by the present authors [8, 9]. Some of its features, 

just discovered, are reported in this paper. Similar models have also been used to study 

properties of quantum dots [10-14]. In this context one should mention works by Ghosh and 

Samantha [15, 16] who added an extra linear term to the interaction potential and, in effect, 

got one additional coupling constant in the Hamiltonian. This trick leads to a larger set of ana-

lytical solutions of the corresponding eigenvalue problem. Generalizations of this approach to 

more than two particles constitute a difficult challenge but are by no means hopeless [17, 18]. 

The two-particle Schrödinger equation describing harmonium as well as its modifications 

and generalizations may be separated to two spherically-symmetric one-particle equations, one 

of them describing the motion of the center of mass in the confining potential and the other 

one describing the relative motion of the particles [4]. The center of mass equation, in the case 

of a parabolic confinement, reduces to a three-dimensional harmonic oscillator eigenvalue 
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problem and is easily solvable. In the equation describing the relative motion, the angular part 

of the wavefunction may be separated and expressed in terms of spherical harmonics. Analyti-

cal solutions of the remainig radial equation were obtained, for a discrete set of the coupling 

constants defining the effective potential, in the case of the pure Coulomb interaction by Taut 

[4] and in the case when an additional linear term appears by Ghosh and Samantha [15, 16]. 

General methods of solving similar equations, for a wide class of potentials, were formulated 

by Singh et al. [2] and by Znoil [3] a quarter of a century ago and recently extended by Bose 

and Gupta [19], However, these mathematically oriented works have been noticed by neither 

quantum chemists nor solid state physicists. In the present paper we generalize the model of 

Taut [4] by introducing an additional coupling constant which describes the strength of 

the interaction. Also the method of solving the equation has been formulated in a general 

form. The recurrent relations which determine the wavefunctions have been transformed to an 

easily solvable eigenvalue problem of a symmetric tridiagonal matrix. In effect several new 

features of the analytical solutions have been noticed. The inspiration for this work has been 

taken from a general approach described in Refs. [2, 3, 19]. Consequently, the method 

presented in this paper is also an illustration of a general approach which may be used to 

construct analytically solvable models for a large number of interaction potentials. 

2. GENERAL FORMULATION 

The six-dimensional Schrödinger eigenvalue problem describing two particles with masses 

m1 and m2, interacting by a potential V(|r1 - r2 |) and confined by a harmonic-oscillator-type 

potential, i.e. 

(1) 

upon the substitution 

and 

where 

(2) 

(3) 

(4) 

(5) 

may be separated to two spherically-symmetric one-particle equations: 
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The center of mass equation, (3), corresponds to a three-dimensional harmonic oscillator of 

the mass M and its solutions may be found in all textbooks of quantum mechanics. Equa-

tion (4) describes the relative motion. Due to its spherical symmetry 

(7) 

Equation (7) may be solved numerically, to practically unlimited accuracy, for all potentials V 

which are sufficiently regular and for which bound-state solutions exist. However, for a num-

ber of potentials V it may also be solved analytically. In this work we limit the discussion to 

the case of Coulomb-type potentials. 

3. T H E C O U L O M B P O T E N T I A L 

If V(r) = 1/r, the properties of Eq. (7) were discussed in detail in the literature [1, 4-7] and 

the corresponding system is referred to as harmonium. By taking V(r) = ζ/r one may extend 

the range of systems described by this model. For example, ζ = -1 may correspond to a con-

fined hydrogen atom or muonic atom (if m1 m2) or to a confined positronium (if m1 = m2 

= 1) [9]. Besides, by adding an additional coupling constant we can get a deeper insight into 

the structure of the analytical solutions. 

Upon the substitution 

Equation (7), with V = ζ/r, becomes 

(8) 

(9) 

where 

(10) 

In this section we present a general method of finding the analytical solutions of Eq. (9). The 

method has two advantages: it may be easily generalized for a large set of the interaction 

potentials V and it utilizes only standard computational techniques of linear algebra. 

(6) 

where l, m are the angular momentum quantum numbers, are spherical harmonics, and 

n = 1,2, ... numbers consecutive energies for a given l. If we set, for simplicity, m1 = m2 = 1 

then m = 1/2 and the radial equation reads 
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The asymptotically correct solutions of Eq. (9) have the form 

where 

We are looking for the analytical solutions (11) with 

(11) 

(12) 

(13) 

By substitution of Eqs. (11) and (13) to Eq. (9) we get 

(18) 

The determinant fulfills recurrent relations 

(19) 

which make its evaluation very simple. 

(14) 

(15) 

(16) 

(17) 

where 

If then, according to the recurrence relations (14), Ap = 0, i.e. 

and, consequently, 

Non-trivial solutions of Eqs. (14) exist if 

(0) has to be finite and 
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The determinant Wp depends on the indices i, p, l and on the parameter s. Therefore, for 

given l and p, Eq. (18) determines a discrete set s = s,(l, p), i = 0, 1, 2, ... , p for which 

the analytical solutions of Eq. (9) exist. The energies corresponding to the analytical solutions 

may be expressed as 

and 

then 

(T + B 0 I ) α = 0, (27) 

Consequently, Eq. (18) may be transformed to an eigenvalue problem of a symmetric 

tridiagonal matrix 

where we used the relation 

and 

(22) 

(23) 

(24) 

(25) 

(26) 

where ωi (l, p) = ζ2/si (l, p)2 and n is a function of p and i. 

4. T R A N S F O R M A T I O N OF T H E R E C U R R E N T R E L A T I O N S 

It is convenient to transform Eqs. (14) to an eigenvalue problem of a symmetric matrix. 

Let 

(20) 

Then Eqs. (14) may be rewritten as 

(21) 

where and As one can easily see, if we set 
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where I is a unit matrix, -B0 stands for the eigenvalue, 

where 

(28) 

(29) 

(30) 

5. THE A N A L Y T I C A L SOLUTIONS 

The procedure described in the previous section is quite general and may be applied to 

an arbitrary three-term recurrent relation. If the confined particles are described by Eq. (9) 

then, according to Eqs. (15), (17) and (24), 

(31) 

(32) 

The eigenvalues s determine the conditions for the coupling constants ζ and ω under which 
s

nl(ρ) given by Eq. (11) is a solution of Eq. (9). Since p may be an arbitrary non-negative 

finite integer, the discrete set of values of i for which Eq. (9) may be solved analytically is 

arbitraily large, though finite. Solutions of Eq. (32) and the corresponding energies, for l = 0 

11, are collected in Table 1. 

The sign of ζ is the same as the sign of s [cf. Eq. (10)]. Therefore s < 0 corresponds to 

the confined positronium and s > 0 corresponds to harmonium. The case of s = 0 corresponds 

to the spherical harmonic oscillator. The spectrum of T is symmetric, i.e. if 

then s j = -sp-j, j= 1,2, ... , (p + l)/2. Since ω = (ζ/s)2, it is the same for the positive and for 

the negative s. Therefore the energies which correspond to the cases analytically solvable, for 

given l and p, are the same for harmonium and for the confined positronium. A plot of spectra 

and the secular equation may be written as 

and α = {α0, α1,..., α p } . The secular determinant is related to W as 

and p 
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of harmonium (ζ = 1) and of the confined positronium (ζ = -1), versus log ω, is presented in 

Fig. 1. The spectra are scaled by the excitation energy to the 10th excited state of the confined 

positronium, i.e. the quantities plotted are equal to 

(33) 

where the superscript cps refers to the confined positronium and EN is the energy of the Nth 

energy level of either harmonium or confined positronium. The energies have been obtained 

by a numerical integration of Eq. (9). The regularities in the distribution of the crossing points 

which may be seen in Fig. 1 are also illustrated in Tables 2 and 3. The values of ω 

Table 1. Values of s = ζ (under assumption of ω = 1) and of 1/s2 = ω (under assumption of ζ = 1) 
for the confined postronium (cps) and for harmonium (hrm) in the case of l = 0; N denotes 
the consecutive number of the energy level of the pertinent system (N = 1 stands for the ground state, 
N = 2 - for the first excited state, etc.). In the last column the corresponding energies are displayed 
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Table 1 continued 

corresponding to the crossing points in Fig. 1 are ordered according to the values of Nh, Np and 

p for 1 p 20 in Table 2. The corresponding values of the indices (Nh, Np, p) are displayed 

in Table 3. As one can see, if ζ = ±1 then 

0 < ω ( N h , N p , p ) < ω (Nh +1,Np,p+1) 0.5, 

0 < ω (Nh, Np + 1,p + 1)<ω (Nh, Np, p) 0.5, 

0 < ω (Nh + 1, Np + 1, p + 2) < ω (Nh, Np, p) 0.5. 
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Each of the inequalities links the values of co distributed along a specific line in Fig. 1. In 

particular, the last inequality corresponds to the series connected by the dotted lines in Fig. 1 

and displayed in the same row of Table 2. 

Fig. 1. Energy levels of harmonium (solid lines) and of the confined positronium (broken lines) for l = 0 

scaled by the excitation energy to the 10th excited state of the confined positronium, v e r s u s l o g ω . 

The points where the energy levels cross correspond to the analytical solutions of Eq. (9) with ζ = ±1. 

The cross ing points are labelled by (N h , Np), where Nh, Np = 1, 2, 3, ... correspond to the consecut ive 

number of the energy level in the spectrum of, respectively, harmonium and positronium. The points 

corresponding to Np - Nh = n0 (in Table 2 they are collected in the same row) are connected by dotted 

lines (the rightmost line corresponds to n0 = 1, and the consecutive ones to n0 = 2, 3 , . . . 

where ω2 = l/[4(4l + 5)]. 

If p is even, i.e. the dimension of T is odd, then sp/2 = 0. This case corresponds to 

the unperturbed spherical harmonic oscillator. The well known analytical solutions 

(34) 

where F is the confluent hypergeometric function, contain only even powers of ρ. Therefore 

the case of sp/2 = 0 appears for every second (even) value of p. Let us note that the asymptotic 

where ω1 = l/[4(l +1)], and for p = 2 

behaviour of is .y-independent [cf. Eq. (11)]. Therefore the functions may always be 

represented as linear combinations of and, , k = 0 , 1,... ,p/2. In particular for p = 1 
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Table 2. Values of 1000/s2 = 1000 × ω in the case of l = 0 and |ζ| = 1 ordered according to Nh, Np, and p. 

T h e c o r r e s p o n d i n g v a l u e s of (Nh, Np, p) are g iven in Tab le 3 

0.1923 

0.2232 

0.2611 

0.3082 

0.2507 

0.2952 

0.3672 0.3509 0.3363 

0.4424 0.4216 0.4031 

0.5396 0.5127 0.4889 0.4676 

0.6675 0.6320 0.6008 0.5732 

0.8392 0.7914 0.7498 0.7133 0.6809 

1.0753 1.0094 0.9527 0.9033 0.8598 

1.4090 1.3155 1.2361 1.1676 1.1078 1.0550 

1.8966 1.7595 1.6446 1.5468 1.4621 1.3881 

2.6381 2.4286 2.2561 2.1111 1.9872 1.8798 1.7856 

3.8233 3.4866 3.2151 2.9905 2.8011 2.6388 2.4977 

5.8417 5.2642 4.8104 4.4426 4.1372 3.8787 3.6565 3.4630 

9.5784 8.4997 7.6797 7.0310 6.5025 6.0620 5.6879 5.3656 

17.3462 15.0786 13.4280 12.1621 11.1544 10.3293 9.6389 9.0509 8.5430 

36.5373 30.8579 26.9624 24.0920 21.8718 20.0933 18.6303 17.4015 16.3520 

100.0000 80.9684 68.9747 60.5899 54.3335 49.4514 45.5149 42.2604 39.5163 37.1652 

500.0000 380.1294 313.2673 269.5770 238.3531 214.7086 196.0616 180.9066 168.3003 157.6185 

T a b l e 3. T h e indices ( N h , Np, p) c o r r e s p o n d i n g to the v a l u e s of ω d i sp layed in T a b l e 2 

Equation (9) for harmonium reads 

(35) 

where 

(1,21,20) 
(1,20,19) 
(1,19,18) (2,20,20) 
(1,18,17) (2,19,19) 
(1,17,16) (2,18,18) (3,19,20) 
(1,16,15) (2,17,17) (3,18,19) 
(1,15,14) (2,16,16) (3,17,18) (4,18,20) 
(1,14,13) (2,15,15) (3,16,17) (4,17,19) 
(1,13,12) (2,14,14) (3,15,16) (4,16,18) (5,17,20) 
(1,12,11) (2,13,13) (3,14,15) (4,15,17) (5,16,19) 
(1,11,10) (2,12,12) (3,13,14) (4,14,16) (5,15,18) (6,16,20) 
(1,10,9) (2,11,11) (3,12,13) (4,13,15) (5,14,17) (6,15,19) 
(1,9,8) (2,10,10) (3,11,12) (4,12,14) (5,13,16) (6,14,18) (7,15,20) 
(1,8,7) (2,9,9) (3,10,11) (4,11,13) (5,12,15) (6,13,17) (7,14,19) 
(1,7,6) (2,8,8) (3,9,10) (4,10,12) (5,11,14) (6,12,16) (7,13,18) (8,14,20) 
(1,6,5) (2,7,7) (3,8,9) (4,9,11) (5,10,13) (6,11,15) (7,12,17) (8,13,19) 
(1,5,4) (2,6,6) (3,7,8) (4,8,10) (5,9,12) (6,10,14) (7,11,16) (8,12,18) (9,13,20) 
(1,4,3) (2,5,5) (3,6,7) (4,7,9) (5,8,11) (6,9,13) (7,10,15) (8,11,17) (9,12,19) 
(1,3,2) (2,4,4) (3,5,6) (4,6,8) (5,7,10) (6,8,12) (7,9,14) (8,10,16) (9,11,18) (10,12,20) 
(1,2,1) (2,3,3) (3,4,5) (4,5,7) (5,6,9) (6,7,11) (7,8,13) (8,9,15) (9,10,17) (10,11,19) 
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and for the confined positronium it is 

(36) 

(37) 

(38) 

(39) 

where 

with 

Let us note that P+

nl (ρ) and P-

nl (ρ) are, respectively, an even and an odd polynomial in ρ. 

6. CONCLUDING R E M A R K S 

The analytical solutions of the eigenvalue equation of the Schrödinger Hamiltonian 

describing two particles confined in a parabolic potential well and interacting by a Coulomb 

force exhibit many remarkable properties. By these properties they differ in an essential way 

from the other solutions of this equation. In particular, only in the case of the analytical 

If s is chosen to be an eigenvalue of T, i.e. with 

Eq. (9), then Consequently, by comparing Eqs. (35) and (37), we see that 

Then, by taking Eq. (35) describes both harmonium and confined positronium 

with (p ) corresponding to harmonium if p 

Equations (35) and (37), with ρ 

eigenvalue equation: 

0. 0 and to the confined positronium if p 

0, may also be expressed as a single two-component 

is an analytical solution (11) of 

Hence, if ψ+nl may be expressed as a linear combination of , k = 0, l,....p/2 then ψ-

nl is 

expressible as a linear combination of 

solutions the transformation ρ -ρ corresponds to the transition (harmonium) (confined 

positronium). Also only for the analytical solutions the energy of harmonium and of confined 
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positronium is, for a given value of |s|, the same. These properties suggest that the existence 

of the analytical solutions is associated with a hidden symmetry of this system. 
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