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Abstract: We investigate the performance of two approaches to remedy the notorious instability 
problems on explicitly correlated multi-reference averaged coupled-pair functional (r12-MR-ACPF) level 
of theory for the cases of HF molecule and Ne dimer. These two approaches are: i) the restriction of 
the unitary orbital invariance while retaining a chemically meaningful ansatz; ii) the contraction of asso-
ciated r12-terms to geminals using amplitudes from the first-order perturbation theory wavefunction. We 
observe that our modifications outperform the extremal pair approach, which is commonly used on 
explicitly correlated coupled-cluster (CC-R12) level of theory and conclude that using geminals, which 
are e.g. taken from the first-order Møller-Plesset perturbation theory wavefunction instead, might be 
a better choice. 

The r12-method of Kutzelnigg and co-workers [1, 2] provides a unique way to include 

terms that are linear in the interelectronic distances, r12 := |r1 - r2|, into the ansatz for 

the wavefunct ion without having to deal with integrals over the coordinates of more than two 

electrons. In our recent multi-reference (MR) formulation [3-5], these linear rI2-terms have 

the form 
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1. I N T R O D U C T I O N

(1) 

and are antisymmetrized 2-electron integrals over r12, and and denote Slater 

determinants, usually taken f rom the smallest meaningful subset of the references. In these 

two types of Slater determinants, the internal orbitals φ i, and φ j are substituted by arbitrary 

orbitals taken from the given set (indices p and q) or from a (hypothetical) complete set 

(indices κ and λ). Of f diagonal terms, i.e. where {i, j} { i ' , j'}, insure that the wavefunction is 

invariant with respect to unitary transformations among the internal orbitals [6], These linear 

r1 2-tenns, Eq. (1), take care of the cusps [7, 8] in the wavefunction at regions, where pairs of 
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that is approximated in the given basis set. 

Meanwhile, the r12-method has been combined with the most common approximations to 

full-CI (see [5, 9-12] for details). On closed-shell level of theory, these methods include 

Møller-Plesset perturbation theory (MPPT) [13] in second (MP2) [14, 15] and higher orders, 

and coupled-cluster singles and doubles (CCSD) with various estimations of the triples 

contribution, e.g. the most common CCSD(T) approximation [9, 16, 17]. Moreover, the 

r12-method has been extended [3, 4, 18] to general open-shell and multiple-reference CI with 

singles and doubles [MR-CI(SD)] and the a priori size extensivity corrected MR averaged 

coupled-pair functional (MR-ACPF) [19, 20]. Very recently, an open-shell CC theory with 

linear r12-terms has become available as well [21, 22]. 

Unfortunately, when the wavefunction has to be determined iteratively, inaccuracies in 

the computed matrix elements often give rise to serious instabilities [9]. On the r12-MR-CI and 

-ACPF levels of theory, these instabilities may lead to spurious solutions which, in extreme 

cases, can lie well below the lowest eigenvalue of the Schrödinger equation. In our software 

(2) 

electrons with opposite spin (i.e. singlets) come close to each other. Together with a moderate 

configuration interaction (CI) expansion, these r12-terms indeed allow to solve the electronic 

Schrödinger equation close to the basis set limit, which, in praxi, would not be possible with 

Slater determinants alone. Please note that by their definition, the linear r12-terms, Eq. (1), are 

matrix elements are evaluated by means of the so-called standard approximation [2], which is 

essentially the resolution of the (one-electron) identity (RI), 

orthogonal to the Slater determinants, of the CI expansion. The Hamiltonian and overlap 

(8-byte) format as the above number approaches log10252 
15.7, the number of significant 

is to be stationarized, is computed in the subset of the trial vectors, which have been iterated in 

the spirit of Davidson's [19, 24] method. The n-th excited state (with n = 0 being the ground 

state) should give rise to at most n non-positive eigenvalues of the Hessian. When this 

condition is not fulfilled, the accuracy of the Hamiltonian matrix elements is questionable and 

the resulting instabilities can make it difficult or even impossible to obtain a converged 

solution. 

Beside the approximate resolution of the identity, Eq. (2), as an obvious source for inac-

curacies leading to instabilities, there are two other main sources. First, there is the 4-index 

transformation of the 2-electron integrals from the atomic orbital (AO) to the molecular orbital 

(MO) basis. The maximum number of cancelled figures in the floating point result in these 

transformations can be roughly estimated as 2 log10C with C := max|{λ i} |/min|{λ i} | being 

the condition number as computed from the set of eigenvalues, {λ i } , of the overlap matrix of 

the AO basis functions. Thus, the computations become inaccurate in IEEE double precision 

[23], the Hessian matrix of the energy functional, F, (i.e. of CI or ACPF type) that 
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such that the union gives the original set of nint internal orbitals. 

(5) 

as linear r12-terms in the ansatz of the wavefunction. 

2. MODIFIED r12-ANSÄTZE 

2.1. Restricted unitary invariance 

The extremal pair approach, as mentioned in the previous section, is applicable to the MR 

case as well, although this leads to a rather complicated formalism. A simpler way to reduce 

the number of independent r12-terms is to restrict the invariance of the ansatz with respect to 

unitary transformations of the orbitals to disjunct subsets ("shells") [5, 18], 

(4) 

thors of Ref. [9] recommend obtaining the extremal pairs by diagonalizing the matrix whose 

trace gives the r12-contribution of MP2-R12 in approximation A. We then have 

These extremal pairs, ψμ(1, 2), are computed by requiring that they make the expectation 

value of a certain totally symmetric Hermitean 2-electron operator, 

either minimal or maximal), which leads to the eigenvalue equation 

extremal (i.e. 

The au-

(3) 

digits in this format. The most difficult MOs to transform are those with a large number of 

nodes. In traditional CI calculations, these MOs are usually of lesser importance because of 

their rather high orbital energies. However, this argument does not apply to the r12-method. 

Secondly, as the basis set approaches completeness, the metric between the r12-terms, which, 

as we recall, is block-diagonal [3, 4], becomes near-singular. The associated condition number 

of the latter metric, however, usually does not become large enough to fully explain 

the occurring instabilities. This is especially true when the r12-terms are normalized to one, as 

it is the case in our software [23]. We conclude this discussion by noting that very recently, 

Noga et al. [22, 25, 26] showed that with basis sets that are carefully optimized for the r12-

method, such instabilities can be significantly reduced or even avoided. 

In order to handle the instabilities discussed above, Kutzelnigg and coworkers [9, 27-29] 

recently proposed reducing the (in leading order) r12-tenns in the orbital invariant ansatz 

[6], to a more physical number of 

(orbital) pairs, 

terms, by using so-called extremal 
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(6) 

These subsets are conveniently chosen in a w a y that the respect ive orbitals do not mix when 

the geometry of the chemical sys tem under investigation is changed. E.g., in the case of 

a diatomic, one m a y h a v e one subset of core and another subset of valence orbitals. Moreover , 

it is p o s s i b l e to further divide these sets. The f inest divis ion p o s s i b l e seems to be putting 

a bonding and the corresponding antibonding orbital into one subset, and each non-bonding 

orbital into a separate subset as well . This method (which in our so f tware [23] is activated 

by the k e y w o r d r12shell) is implemented in the f o l l o w i n g w a y : let the two internal 

orbitals and g i v e r ise to r 1 2-terms, , Eq. (1), then only those terms wil l be 

kept for which holds. 

2.2. Geminals 

For a diatomic, it wil l not pose any speci f ic problem to restrict the unitary invariance such 

that the quality of the wavefunct ion is suf f ic ient ly independent f rom the geometry . However , 

in a polyatomic molecule, in general, the atomic orbitals mix in a more complicated w a y when 

f o r m i n g molecular orbitals. Thus, i t may become di f f icul t to f ind invariant subsets that are 

small enough to suf f ic ient ly reduce the number of linear r1 2-terms, but that are still large 

enough so that the di f ferent subsets essential ly do not mix. In such cases, it may be 

advantageous to do an internal contraction of the r1 2-terms to geminals, [5, 30], 

(7) 

E.g. in the s ingle reference case, this reduces the number of r 1 2-terms f rom to The 

contraction coef f ic ients , , are taken from the first-order Epstein-Nesbet [31, 32] perturba-

tion theory (ENPT) wavefunct ion, 

(8) 

which, in our program code [23], is used as start wavefunct ion. Ψ 0 is the zeroth-order w a v e -

function consist ing of the references, and E 0 is the corresponding expectation va lue of 

the Hamiltonian, . It is even poss ib le (and meaningful) to contract all r 1 2-terms together, 

(9) 

In our s o f t w a r e [23], the geminal, Eq. (7), and the contracted geminal options, Eq. (9), are 

invoked by setting the var iable r12fix in the Fortran namelist input ( f i le ciudgin) of program 

ciudg to 1 or 2, respectively. 
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3. DETAILS OF CALCULATIONS 

3.1. General 

Although these two different approaches, i.e. restricted unitary invariance and the usage of 

geminals, Eq. (7) and (9), have already been described in the literature [5, 18, 30], their 

performance has not yet been investigated in detail. To this end, we study these two 

approaches on two systems that cover the extreme cases of chemical interactions, i.e. HF with 

its strong polar covalent bond and Ne2, which is bound by the weak dispersion forces only. All 

calculations were performed with the AMICA suite of programs [23], which is based on the 

COLUMBUS [33] package. 

We compare these modifications to the original unitary invariant r12-ansatz using different 

basis sets, reference spaces, and funct ional (i.e. ACPF [19] and ACPF-2 [20]). The orbitals 

are optimized in MCSCF calculations and the redundancies with respect to the orbital 

rotations are resolved by diagonalizing the Q matrix [34], In the r12-MR-ACPF and -ACPF-2 

calculations, all electrons are correlated and the energies are sharply converged to 10-10 Eh. 

Since the r12-MR-AGPF methods are, in general, only approximately size extensive, we 

compute the interaction energy, V(R), of a dimer AB (consisting of atoms A and B) with 

an interatomic distance R with the supermolecule approach and include the usual counterpoise 

corrections for the basis set superposition error (BSSE) of the Boys-Bernardi [35] type, 

The indices AQ and QB denote atoms A and B with a "ghost basis set" Q. "Infinite" 

separation is in fact realized by an interatomic distance of 100 a0. Too large interatomic 

separations are not practical because they may give rise to a cancellation of valid digits when 

handling, e.g., the 2-electron integrals over r12. The molecular constants Re and De are 

obtained by interpolating the energies at three interatomic distances using a polynomial that is 

quadratic in 1/R, 

For HF, we choose the interatomic distances 1.7228, 1.7328, and 1.7428 a0. For the single 

reference treatment of Ne2, we take the values 3.1, 3.125 and 3.15 Å. And finally for the MR 

calculations of Ne2, we use R = 3.075, 3.1, and 3.125 Å. 

3.2. Basis sets 

For fluorine, we take Partridge's [36] 18sl3p set and augment it by one diffuse s and p 

using logarithmical extrapolation [5], i.e. ηn+1 = η2

n/ηn-1. Then we add the dfgh-part of the 

aug-cc-pV5Z basis of Dunning and co-workers [37]. Finally, we augment two tight d and one 

(10) 

(11) 
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tight f that have been logarithmically extrapolated. The resulting basis set is of 

[ 1 9 s 1 4 p 7 d 5 f 3 g 2 h ] quality. For hydrogen, we take the s-functions of the uncontracted aug-cc-

pV6Z set [38] and combine them with the pdfg-functions of aug-cc-pV5Z [38], We finally add 

one logarithmically extrapolated tight p-function. This basis set is of [11s6p4d3f2g] quality. 

For neon, we take the [ set from Ref. [39]. 

For the treatment of the HF molecule, we also truncate the spdfgh/spdfg set by suc-

cessively omitting the functions with the respectively highest l-quantum numbers, resulting in 

spdfg/spdf and spdf/spd sets with 268, 228, and 180 basis functions. We recall that for 

the ground states of first-row elements, the basis set formally has to be saturated up to L = 3, 

i.e. including f-functions [40]. Moreover, in the case of Ne 2 it turns out that g-functions are 

mandatory to obtain physically meaningful interaction energies since with the basis set 

truncated to spdf e.g. with r12-ACPF, we obtain a De value of 160 μE h . This is 3 8 % larger than 

the basis set limit [39] and therefore, we confine our studies on Ne2 to basis sets of spdfgh and 

spdfg quality with 376 and 332 functions, respectively. 

3.3. Restr icted un i tary invar iant ansatze 

The Hartree-Fock wavefunction of the F-atom consists of five orbitals, i.e. 1s, 2s, 2 p x , 2 p y , 

and 2 p z and the one of the H-atom, only of the 1s orbital. In the HF molecule, these atomic 

orbitals give rise to six molecular orbitals, i.e. l σ ( l s F ) , 2σ(2sF), 3σ(H-F bond), 1πx and 1πy 

(non-bonded electron pairs), and 4σ (anti-bonding electron pair). We choose four different 

Table 1. Orbital subsets used in the restricted unitary invariant r12-ansatze for the F, Ne, HF, and Ne2 

calculations 

a Shown are orbital subsets for the multi-reference calculations; in the single-reference case, the 4σ 
orbital is omitted. 

orbital subspaces for the restricted invariant ansatz (see Table 1). We note in passing that it is 

important that the orbital space partitioning of the dimer corresponds to an equivalent 

partitioning of the (single) heavy atoms (F and Ne). To this end, for HF, we separate the inner 

core orbitals (1s, respectively lσ) from the remaining orbitals in ansatz A. In ansatz B, we also 

put the 2s, respectively 2σ orbital into the core. In ansatz C we have two different sets of core 

orbitals and finally in ansatz D, all orbitals with the exception of the bonding/anti-bonding 

{3σ, 4σ} pair, are individual. We follow a similar strategy for Ne 2 (see Table 1). 
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3.4. Reference spaces 

For the HF molecule, our smallest MR space is a complete active space (CAS) consisting 

of only the bonding (3σ) and the corresponding antibonding orbital (4σ). In C2v symmetry, 

this space gives rise to 3 references and we therefore denote it CAS-3. A larger reference 

space (CAS-5) is obtained by also including the nonbonding electron pairs in the form of 

the two nonbonding (1πx and 1πy) orbitals. Finally, we construct a restricted active space 

(RAS-70) from the CAS-5 by allowing for all single and double excitations from valence 

orbitals into orbitals arising from the fluorine 3p . 

For Ne2, we use a single-reference ansatz and the RAS-109 of Ref. [39], which is 

constructed by allowing for all single and double excitations from 2p to 3p orbitals. 

4. RESULTS AND DISCUSSION 

Table 2 shows the number of variational parameters within the respective r12-ansatz. While 

reducing this number has no significant (if any) influence on the computational costs of 

a single iteration, it can be expected that the instabilities attenuate or even vanish with 

a decreasing number of r12-terms. Tables 3 to 7 show the change of the total energy at Re, as 

well as of the spectroscopic constants De and Re on r12-MR-ACPF-2 level of theory for the 

different r12-ansätze and reference spaces. The notation of the modified ansätze is as described 

in Table 1 and Section 2.2, respectively. Using r12-MR-ACPF instead of ACPF-2 leads to 

about 1 mEh and 0.1 mEh lower total energies for HF and Ne2 (see Tables 3 to 7), but the errors 

due to the various modified ansätze are virtually unchanged. 

Table 2. The number of variational parameters associated with the r12-terms 

For the HF molecule (see Tables 3 to 5) the changes in the spectroscopic constants due to 

the various modifications of the rl2-ansatz, in all combinations of basis sets and reference 

spaces, are insignificant when compared to the errors of our calculations in the spdfgh/spdfg 

basis and RAS-70. Compared to the experimental values [41, 42], the errors of this latter 

calculation (see Table 5) are -0 .02 ± 0.02 kcal/mol for De (when corrected by -0 .58 kcal/mol 

for spin-orbit coupling and scalar relativistic effects [43]) and -0 .0002 Å for Re. 
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Table 3. The total energy, De, and Re of the HF molecule obtained with r12-MR-ACPF-2 
in the CAS-3 reference space and the spdf/spd basisa,b 

a Given are the differences w/r/t the invariant ACPF-2 values. 
b The corresponding values for ACPF differ by at most 3 units in the last digit. 

In the case of Ne2 (see Tables 6 and 7), however, the changes in De and Re for the re-

stricted invariant ansätze B to D are of similar size as the estimated errors of our recent 

treatment [39], i.e. ±1 μEh for Dc and ±0.002 Å for Re. The changes in the restricted unitary 

ansatz A and the geminal approach are somewhat smaller, especially in the largest spdfgh 

basis set, but they are still too large to allow for an accurate treatment. 

Next we investigate the size extensivity error, 

of our modified r12-ACPF ansatze. We recall that ACPF [19] and r12-ACPF [3] are accurately 

size extensive for equivalent closed-shell subsystems and thus also for non-interacting Ne 

atoms. ACPF-2 [20] exhibits slight deviations from size extensivity because of the dampening 

of the singles contribution. To this end, we compute the dissociation energy using the regular 

formula that is valid for size extensive methods, 

(12) 

(13) 

(14) 

and use the supermolecule approach [c.f. Eq. (10)] as well, 

Both formulas contain counterpoise corrections for the BSSE (see Sect. 3.1). We observe 

a negligible size extensivity error of r12-ACPF of 0.02 μEh (see Table 8), which can be 

attributed to the numerical problems that have already been discussed in Sect. 3.1. We find all 

restricted unitary invariant ansätze (see Sect. 2.1) to be accurately size extensive as well. 

The geminal approaches, Eq. (7) and especially Eq. (9), however, give rise to substantial size 

extensivity errors, which apparently can only to some extent be corrected by the super-

molecular approach, Eq. (14). Indeed, the ENPT-1 wavefunction [c.f. Eq. (8)] is not separable 

[44] and the size extensivity error [c.f. Eq. (12)] of, e.g., the ENPT-1 energy, 



Table 4. The total energy, De, and Re of the HF molecule obtained with r12-MR-ACPF-2 and the spdfg/spdfbasisa,b 

a Given are the differences w/r/t the invariant ACPF-2 values. 
b The corresponding values for ACPF differ by at most 1 unit in the last digit. 

Table 5. The total energy, De, and Re of the HF molecule obtained with r12-MR-ACPF-2 and the spdfgh/spdfg basis a,b 

a Given are the differences w/r/t the invariant ACPF-2 values. 
b The corresponding values for ACPF differ by at most 2 units in the last digit. 
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Table 6. The total energy, De, and Re. of Ne2 obtained with r12-MR-ACPF-2 and the spdfg basis a , b 

a Given are the differences w/r/t the invariant ACPF-2 values. 
b The corresponding values for ACPF differ by at most I unit in the last digit. 

Table 7. The total energy, De, and Re of Ne2 obtained with (single reference) r12-ACPF-2 and 

the spdfgh basis a , b 

a Given are the differences w/r/t the invariant ACPF-2 values. 
b The corresponding values for ACPF differ by at most 1 unit in the last digit. 

Table 8. The dissociation energya of Ne2 computed with r1 2-ACPF using the regular (De), and 

the supermolecular approach (D e ') and the associated size extensivity error (ΔEe x t)
a 

aR = 3.1 Å; spdfg basis set; all energies in μEh; see Eq. (12) to (14) in text. 
b Given are the differences w/r/t the invariant r ]2-ACPF values. 
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is as large as 81 mEh. This, in fact, explains the poor performance of the geminal ansätze in 

the case of Ne2, as was discussed before (c.f. Table 6). However, in the case of a stronger 

interaction, as is e.g. the case for HF, a size extensivity error of a few μEh is negligible and 

the geminal approaches, Eq. (7) and Eq. (9) can be expected to give reliable results. 

Table 9. The errors of the total energies of HF molecule and of Ne atom (in μEh) calculated with 
r12-ACPF-2a using the modified ansätze and with CCSD-R12 using extremal pairs with respect 

to the corresponding invariant ansatz 

aThe corresponding r12-ACPF values differ by not more than 1μEh. 
b [15s9p6d5f]/[6s3p2d] set of Ref. [28]. 
c Subsets of [17s11p8d7f6g5h4i] set of Ref. [28]. 
dr12-ACPF-2 with restricted unitary invariant (r12inv, A through D) and geminal ansatz (r12fix=1 

and r12fix=2), this work. 
e From Tables 3 and 6 of Ref. [28]. 

In Table 9 we finally compare the performance of our modified rl2-ACPF-2 ansätze with 

the performance of CCSD-R12 using the extremal pair approach [28], This comparison is 

valid because (single reference) ACPF-2 [19, 20] can be regarded as an approximation to 

CCSD. We note that for the cases of Table 9, the errors of CCSD(T) due to the extremal pair 

approach are virtually the same as for CCSD (i.e. the deviations are not larger than 3 μEh 

[28]). The errors of the restricted unitary invariance approach (see Sect. 2.1) are consistently 

smaller than are the errors of the extremal pair approach. Somewhat surprising, this is also 

the case for the choice of r12inv, D, which is rather close to the original non-invariant ansatz 

[2]. In the single reference case, the geminal approach, Eq. (7), gives rise to the same number 

of terms as the extremal pairs approach, which are equal to the number of electron pairs. 

Despite this fact, our geminal approach dramatically outperforms the extremal pair method by 

a factor of 8 to 18, i.e. by about an order of magnitude. Indeed, the terms of the 

extremal pair approach are constructed from r12-terms using only coefficients, 

see Eq. (4). The same number of terms in the geminal method, Eq. (7), however, is generated 

by as much as coefficients, . Even when all r12-terms are contracted together to one 

(15) 
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term (keyword r12fix = 2), in small basis sets, this method betters the extremal pair approach 

by a factor of 3 and in large basis sets, the error is virtually the same. Thus, we conclude that 

the extremal pair approach of Kutzelnigg and co-workers [9, 27-29] is not an optimal choice. 

Our results suggest that for CC-R12 theory, it might be better to take geminals, Eq. (7), f rom, 

e.g., the first-order M P P T wavefunction. 

We summarize by noting that in the case of a (strong) covalent interaction, surprisingly 

inflexible r12-ansätze, where the unitary invariance is restricted to pairs of the bonding and 

the corresponding antibonding orbital, or where all r12-terms are contracted together to form 

geminals, do not influence the accuracy of the calculation. In the case of a (weak) dispersion 

interaction, however, even rather subtle approximations as removing the invariance of 

the ansatz with respect to mixing of core and valence electrons or using geminals significantly 

deteriorates the accuracy. Thus one may take the strength of the treated chemical interaction 

as guidance to decide how to modify the r1 2-MR ansatz in order to reduce the number of r12-

terms to cope with existing numerical instabilities. 
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