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Abstrac t . Molecular calculations without assuming the Born-Oppenheimer (BO) approximation present 
a level of complexity which is much higher than in calculations where the BO approximation is assumed 
and the nuclei are stationary. In this report we discuss how non-BO calculations can be carried out for 
a system with three nuclei and three electrons, i.e. H3. In particular, the problem of basis set selection 
that is critical to achieving high accuracy in such calculations is discussed. As an illustration a small-
scale non-BO calculations of H3 are presented and discussed. 

1. INTRODUCTION 

The important works of Rychlewski and coworkers have demonstrated that very high 

accuracy can be achieved in molecular calculations if the wave function of the considered 

system is expanded in terms of functions explicitly dependent on the inter-electron distances 

[1-6]. The calculations of Rychlewski et al. have been carried out assuming the Born-Oppen-

heimer (BO) approximation, i.e. the nuclei forming the molecular system were placed in fixed 

spatial positions and only the electronic wave function was determined. In order to elevate 

the precision of molecular quantum-mechanical calculations of such properties as excitation 

energies, electron affinities, and ionization potentials, which are currently measured with 

the precision exceeding tenth or even hundredth of a wave number, an approach that departs 

from the BO approximation needs to be applied. Such an approach has been under develop-

ment in our research group at Arizona. In the non-BO atomic and molecular calculations 

[7-15] we have carried out using that approach, we have employed the explicitly correlated 

gaussian functions which have been also used by Rychlewski and his coworkers. 

Since we are not assuming the BO approximation regarding the separability of the elec-

tronic and nuclear motions, the problem we face in the calculations is considerably different 

from the standard BO problem. If the center-of-mass motion is separated from the "internal 

motion" in the Hamiltonian and, if the internal motions of the nuclei and the electrons forming 

the system are treated on equal footing, the task of determining stationary ground and excited 

states of the system, i.e. determinations of the total energies and the wave functions of 

the system, presents a level of difficulty and complication that is much higher than in the or-

dinary BO calculations. The additional difficulty arises from the fact that, when electrons and 

nuclei are equivalently treated, the wave function of the system has to properly describe not 
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correlations. The latter two are more significant effects than the first one because the elec-

trons, particularly the core electrons, very closely follow the nuclei, and the nuclei stay apart 

from each other in their very correlated motion. To describe these correlations in the non-BO 

wave function, one needs to employ basis functions that are capable of representing the re-

duced probability density of finding two electrons in the same point in space (the Coulomb 

hole), the further reduced probability of finding two nuclei together, and the increased 

probability of finding the electrons near the nuclei. 

2. H A M I L T O N I A N 

We begin with the full non-relativistic Hamiltonian for a molecular system with the total 
number of electrons and nuclei equal to n + 1 in the laboratory Cartesian coordinate system. It 
is written so that no distinction between electrons and nuclei is made by referring to n + 1 
general particles with masses Mi, charges Qi, and positions Ri, where i = 1 , . . . , n + 1: 

(1) 

(2) 

This Hamiltonian describes a system containing a heavy particle at the origin of the coordi-

nates with charge q0 = Q1; also in the system there are n pseudoparticles, or internal particles, 

which are characterized by the reduced masses mi = (M1Mi+1)/(M1 + Mi+1) and charges 

qi
= Qi+1. The second term in the parentheses is the mass polarization term, which arises from 

the transformation and couples the motion of all the particles. In the potential energy term, ri 

and rij are defined as: ri = |R i + 1 - R1| and rij = |Rj+1 - R i + 1 | = |rj - r i | . The eigenfunction of 

this Hamiltonian will be a function of the positions of all n pseudoparticles, meaning that all 

the particles forming the system, including the nuclei, are described by the wave function. 

For H3, the internal Hamiltonian describes the motions of five pseudoparticles in the cen-

tral field of a proton placed in the center of the coordinate system: 

(3) 

where M1 is the proton mass, q0 = q1 = q2 = 1, and q3 = q4 = q5 = -1. 

where Rij = |Rj - Ri| are inter-particle distances. This Hamiltonian describes a system in 

which the motions of electrons and nuclei are coupled. We then make a transformation to 

separate the Hamiltonian representing the motion of the center-of-mass in the laboratory 

t ide problem to an n-pseudoparticle problem. If we choose to place a heavy particle (particle 1 

with mass M1) at the center of the internal Cartesian coordinate system, the resulting internal 

Hamiltonian is: 

coordinate system from the internal Hamiltonian, thereby reducing the (n + l)-par-
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3. WAVE FUNCTION 

The model of the molecule described by Hamiltonian (2) is, in a way, similar to an atom, 

as has been noted by Monkhorst [16]. One can call the model a "molecular atom". In the "mo-

lecular atom", there is an analogue of the nucleus in the heavy particle that is placed at 

the center of the internal coordinate system, and there are analogues of electrons in the internal 

particles (pseudoparticles). However, while all particles in an atom, apart from the particle in 

the center, are electrons, in the "molecular atom", some of the internal particles are heavier 

than electrons and have positive charges. Formally, this difference is manifested in the effe-

ctive masses of the pseudoparticles, in the interparticle interaction potential, and in the way 

the permutational symmetry is implemented in the wave function. 

In order to enforce the required permutational symmetry of the wave function in the "ato-

mic molecule", each set of identical particles must be symmetrized or antisymmetrized, de-

pending on whether they are bosons or fermions. Thus, the operator enforcing the per-

mutational symmetry has to be a direct product of "antisymmetrizers" (or "symmetrizers" in 

the case of bosons) representing the sets of identical particles. Formally, in our work, the per-

where r1, r2, and r12 are distances between nuclei 1-2, 1-3, and 2-3, respectively, Ak is a sym-

metric 5 x 5 matrix of variational exponential parameters, I3 is the 3 x 3 identity matrix, 

(4) 

internal-angular-momentum state is spherically symmetric (by analogy with the atom), 

the wave function describing the ground state of the molecule is also spherically symmetric. 

Due to this symmetry one should use spherically symmetric basis functions in expanding 

the ground-state non-BO wave function in the analytical form. As we have proposed, such 

basis functions for H3 should have the following form [7]: 

momenta of the pseudoparticles), N = L + R. Thus we have = 0. Since the ground 

the sum of the electronic and nuclear angular momenta (or, more precisely, the total angular 

the square of the all-particle angular-momentum operator, which may be though of as 

a Young operator for the third-order symmetric group which permutes the electronic coordi-

nates. For H3, both nuclear and electronic symmetry operators corresponded to a doublet re-

presentation. It should be noted that the permutations used in the internal particle basis func-

tions are 'pseudo'-permutations induced by the permutations on real particles. For discussion 

of the construction of the operators, see, for example, the work of Pauncz [17]. 

The internal Hamiltonian of "atomic molecule" is "isotropic" and commutes with 

mutational-symmetry operator is constructed as a product of Young operators, For H3, 

the operator has the following form: 

for the third-order symmetric group, which permutes the nuclear coordinates, and is 

is a Young operator where 

( ' ) denotes transposition, and is the Kronecker matrix product. The basis (4) properly 
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reflects the symmetry of the H3 non-BO internal ground-state wave function and can effec-

tively describe the electron-electron, nucleus-nucleus, and electron-nucleus correlation effects. 

While the work on the implementation of the basis set (4) is being carried out in our 

research group, we have been recently exploring the possibility of using another basis set in 

molecular non-BO calculations [12-15, 18, 19]. It consists of n-particle explicitly correlated 

gaussians with shifted centers (or floating spherical explicitly correlated gaussians, FSECGs): 

(5) 

1.4 Bohrs and the distance between H2 and H3 equal to 6.442 Bohrs. These distances are 

consistent with the results of the calculations performed by the others. With the approach we 

used in the BO calculations, we expanded the electronic wave function in terms of 64 expli-

citly correlated three-electron gaussians with floating centers and we optimized the geometri-

cal parameters of the system simultaneously with the exponential parameters involved in 

the basis functions. Apart from the geometry of the H3 complex, the calculations produced 

a well optimized BO wave function, which was used in the present work to generate the initial 

guess for the non-BO calculations as described below. 

the centers into the gaussian exponents and allowing the centers to move away from the co-

ordinate center the flexibility of the functions is increased. However, it makes them not 

spherically symmetric. Thus if such functions are use in expanding the ground-state non-BO 

wave function, the function becomes "contaminated" by rotational states with the rotational 

quantum number higher than zero. If, however, the variational method is used in the calcula-

tions and both linear and non-linear parameters of the wave function are fully optimized, 

the contamination can be effectively reduced. So, if the focus of the calculation is the total 

ground-state energy, the use of FSECGs may be justified. 

Another advantage of using FSECGs in non-BO calculations is their ability to describe 

molecular electronic configurations involving some electrons occupying higher angular-mo-

mentum states without explicitly introducing angular factors in the gaussian functions. Since 

FSECGs form a complete set, one should be able to use them to describe states with any 

symmetry. However, whether this would lead to an efficient and accurate approach remains 

unclear. 

4. NON-BO CALCULATIONS OF H3 

The equilibrium structure of the H3 complex has been studied with the use of BO approach 

by Truhlar and Horowitz [20], Wu et a l . [21], Tang and Toennies, [22] as well as by our 

group [23]. The studies showed that in the lowest-energy structure H3 is linear van der Waals 

Our calculations produced the distance between HI and H2 equal to complex 

where s is a 3n vector of cartesian coordinates of the gaussian centers. The basis has been 

employed in non-BO calculations of static electrical properties of small diatomic systems 

[12-15], as well as in non-BO calculations of isotopomers [18, 19]. By introducing 
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(7) 

(8) 

In our non-BO studies involving FSECGs, we found that an effective way to generate 

the initial guess for the wave function in the nonadiabatic calculation is to start with a BO 

wave function generated for equilibrium structure of the studied molecule with the heaviest 

nucleus placed in the center of the coordinate system and the other nuclei placed in their 

respective equilibrium positions. Expanding such a wave function by multiplying each basis 

function in the expansion of the BO wave function by a gaussian for each of the nuclei located 

away from the center of the coordinate system and approximately representing the vibration 

wave function of that nucleus generates a good starting guess for the nonadiabatic calculation. 

Once the calculation starts, the variational optimization of the energy functional, with respect 

to all gaussian exponential parameters (i.e. exponents and shifts) and the linear expansion 

coefficients, adjusts the basis functions to best describe the non-BO ground state of the sys-

tem. One purpose of this adjustment is diffusing the distribution of the gaussian centers in 

the three-dimensional space to best describe the electronic and vibrational components of 

the wave function and the other is to minimize contributions of higher rotational states. 

The transformation of the BO FSECG basis to non-BO basis can be easiest accomplished 

by realization that the k of Eq. (5) can be alternatively expressed using the distance coordi-

converted to {rij} variables as follows (we drop the subscript k for convenience): 

nates {rij}. The quadratic form, r '(A I3)r, which is a part of the exponential of k, may be 

(6) 

where tr [ ] is the matrix trace operator, (ri rj) is the n x n matrix of dot products of the com-

ponent vectors of r, (r2
ij) is the n x n matrix of squared distance variables, and B is a matrix 

with elements given, in terms of the elements of an arbitrary matrix A, by the transformation: 

Hence, r' (A I3)r can be written using only distance coordinates. We should mention that, 

even though rij are not independent for more than four particles, there is no redundancy in 

writing the wave function in terms of them because the variables the wave function depends 

on are the internal cartesian coordinates which are all independent. If one has k in terms of 

Bk i.e. a function of rij, and wishes to transform to Ak, a function of r, the following relation 

can be used: 
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In Table 1 we present the total energy and the average interparticle distances obtained in 

the calculations for each of the two basis sets. The non-BO energies are -1 .65610833 and 

-1 .65671102 hartrees for the 128-term and 256-term bases, respectively. These energies can 

be compared with our BO energy o f - 1 . 6 7 3 4 6 8 hartree obtained for the equilibrium geometry 

of H3 using a 64-term FSECG basis set [23]. The BO result is lower than the non-BO energy 

because it does not include the positive contribution from the kinetic energy of the nuclear 

motion. It also does not include the coupling effects of the electronic and nuclear motions. 

Table 1. Values for the nonadiabatic energies, virial coefficients (η) 

and interparticle distances of H3. All values are in atomic units 

The wave function was optimized with respect to the parameters Lk, sk, and ck. This lead to 

( 1 / 2 ) n(n +1) + 3n + 1 variational parameters per basis function (31 for the H3 system). 

The optimization was based on the Newton-type algorithm involving analytical gradients of 

the energy with respect to both linear and non-linear parameters included in the basis func-

tions [13], The development of the analytical gradients has contributed to the breakthrough 

that has allowed us to achieve very high accuracy in BO and non-BO molecular calculations. 

The calculations presented here have been carried out on a 64-node ATLON Beowulf 

cluster. Due to the shared user environment on this system, we have been only allowed to use 

up to 16-processors in a single job. This restrictions put a practical limit on the length of 

the basis set expansion of the wave function. Also, the results obtained with the 128 and 

256-term basis sets shown here only represent preliminary data of a larger set of calculations 

involving more basis functions which we plan to publish in the near future [24]. 

The H3 ground-state energy and the wave function were obtained in variational optimiza-

tion of the energy functional: 

where Lk is a lower triangular matrix whose elements can vary in the range The basis 

functions may then be written as: 

(10) 

(9) 

(11) 

The square integrability of the basis can be assured by writing Ak in Cholesky factored 

form as: 
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Furthermore, even with the 256-term basis set, the non-BO energy is certainly not as well con-

verged as the BO energy obtained with 64-term basis set. The present non-BO energy result 

can certainly be improved by further optimizations of the basis set parameters as well as by 

adding more functions to the basis set. One would probably need several thousand basis 

functions in this case to converge the energy below the micro-hartree accuracy. An assuring 

feature of the results are the very-close-to-one values of the virial coefficients for the two 

basis. Also, to this point the optimizations have shown steady progress in lowering the energy 

and no signs of ill-behaving (e.g. linear dependencies). 

Since in the non-BO approach both electrons and nuclei are included in the wave function, 

the information on the molecular structure can be only obtained by calculating expectation 

values of the geometrical parameters (i.e. distances and angles). Since the operators represent-

cannot measure these distances exactly for stationary states of the system. Furthermore, 

the expectation values of the distances between any two particles in each subset of identical 

particles (including the distance to the particle at the origin, if that particle belongs to 

the subset) will be equal. This is a widely known fact for electrons, i.e. due to antisymmetry, 

or indistinguishability, all of the electrons are on average at the same distance from each other, 

as well as from each nucleus in the molecule. That this same fact applies to nuclei is, perhaps, 

less known. Thus for the H3 system studied in the present work, there are only three distinct 

average interparticle distances, i.e., the electron-electron (e-e), e-H, and H-H distances, that 

we can obtained from the non-BO wave function (they are listed in Table 1). One should 

notice that the single internuclear H-H distance (we would also be only able to determine a 

single H-H-H angle being the average of the three H-H-H angels in H3. This average angle 

would be equal to 120°) does not permit determination of the molecular structure of the H3 

system. Other expectation values related to the structure need to be calculated to confirm that 

H3 is a complex of an H2 molecule with a distant third hydrogen colinear with H2, as differed 

from the BO calculations. 

The average value of the H-H distance of 6.23 bohr obtained in the calculations with 

the 256-term basis set wave function can be compared with the average of the inter-

nuclear distances of 5.23 bohr obtained in our previous BO calculations (rH1-H2 = 1.400 bohr, 

rH2-H3 = 6.442 bohr, and rH1-H3 = 7.842 bohr) [23]. As expected, the non-BO average H-H dis-

tance is larger than the BO average distance because in the non-BO approach the calculation 

of the expectation values involves averaging over the wave function that includes the vibra-

tional component. Since H3 is a weakly bonded complex of H2 with H, the potential surface 

along the H2···H coordinate is very shallow and anharmonic resulting in the equilibrium aver-

age H-H distance being considerably shorter than the vibrationally averaged distance. Also, 

the small sizes of the basis sets used in the present non-BO calculations contribute to 

the average H-H distance being longer than it should be. This effect is showing in going from 

ing the internuclear distances, ri or rij do not commute with the Hamiltonian: , we 
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the 128-term to the 256-term wave function which results in shortening of the distance from 

6.67 bohr to 6.23 bohr. Calculations with larger basis sets will show if this trend will continue. 

5. C O N C L U S I O N 

In this work we showed our preliminary results of rigorous non-BO calculations concern-

ing the H3 system. These are the first such calculations performed for H3 . The data obtained so 

far are encouraging and seem to indicate that the explicitly correlated n-particle floating 

gaussian functions provide an effective basis set for nonadiabatic calculations of this 

molecule. However, it is clear that many more basis functions are needed to achieve the accu-

racy that is desired and expected in non-BO calculations. 
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