
C O M P U T A T I O N A L METHODS I N SCIENCE A N D T E C H N O L O G Y 9 (1 - 2) , 1 3 7 - 1 4 5 (2 0 0 3)

EFFICIENCY OF MATRIX ELEMENTS COMPUTATIONS
ON PARALLEL SYSTEMS*

MIECZYSŁAW T O R C H A Ł A AND JACEK K O M A S A

Quantum Chemistry Group, Faculty of Chemistry, Adam Mickiewicz University,
Grunwaldzka 6, 60-780 Poznań, Poland

(Rec. 29 January 2004)

Abstract : Experience with adapting sequential programs to a parallel environment is shared with
the reader. Our programs are used in quantum-chemical calculations but certain parts of them are of gen-
eral application and our results can be adapted to other types of problems. Several PC nodes are
connected through a fast network and consolidated to a cluster. Our applications make use of the Mes-
sage Passing Interface environment. Encouraging results concerning speedup and efficiency have been
obtained. Experiments leading to a superlinear speedup using the hyperthreading technology are also
reported.

1. INTRODUCTION

Enormous progress in computer technology has stimulated continuous adaptation of

s o f t w a r e to quickly changing computational environment. Often, an old algorithm has to be

implemented on n e w machines appearing in the market. In particular, parallel computers

become more and more access ib le which calls for a modification of the exis t ing s o f t w a r e to

m a k e use of the n e w opportunities.

In quantum chemical calculations, as wel l as in other areas of computational science,

the opportunity of shortening the t ime one wai ts for the f inal result cannot be overest imated.

In this paper we descr ibe our e f f o r t of adapting algorithms used in quantum chemical calcula-

tions to the situation when a set of several PC machines are connected f o r m i n g a cluster. In

other words , we want to share our experience with paral lel izing sequential programs using

a M e s s a g e Pass ing Interface (MPI) environment.

Our paper is addressed to the reader w h o has got an access to more than one processor and

wants to utilize this to speeding up his computations. We show, in an elementary w a y , h o w to

set up a cluster, i.e. h o w to m a k e t w o or more processors to communicate, us ing the MPI

technology. Then we present results for a speedup and e f f ic iency obtained in a s imple case of

f i l l ing up a matrix with the elements which are assumed to be mutually independent. And

f inally, we share our exper ience in deal ing with a new technology called hyperthreading,

which results in a superlinear speedup.

* Dedicated to the memory of Professor Jacek Rychlewski

user
Tekst maszynowy
CMST 9(1) 137-145 (2003)

user
Tekst maszynowy
DOI:10.12921/cmst.2003.09.01.137-145

user
Tekst maszynowy

user
Tekst maszynowy

138 M. Torchata and J. Komasa

2. MOTIVATION AND QUANTUM-CHEMISTRY ESSENTIALS

In this section we introduce some quantum-chemical notions to show the origin of our

interest in the parallelization of the matrix algebra programs. As in most quantum-chemical

methods we start with the Schrödinger equation

(1)

Here, Ψ represents a w a v e function describing a given quantum-mechanical system, E -

energy of this system, and is the Hamiltonian operator specifying components of the energy

included in the model. We shall focus on variational solutions to the Schrödinger equation.

The variational method is based on the theorem saying that for any square-integrable trial

function Φ, the so called Rayleigh quotient

(2)

satisfies the following inequality ε E which means that the energy computed using

an approximate wave function gives an upper bound to the exact energy, E (see e.g. [1]). This

general principle is employed as a guide in search for possibly accurate approximations to

the exact wave function and energy. To make use of the variational principle we expand the

trial wave function Φ in the form of a properly symmetrized linear combination of some

(3)

Substitution of (3) into (2), subject to the stationary condition on the linear coefficients,

= 0, leads to a matrix form of the Schrödinger equation

(4)

with matrix elements Eq. (4) has a well known form of

the general symmetric eigenvalue problem (GSEP) and can be solved using standard linear

algebra methods [2].

As the Hamiltonian operator is Hermitian, the matrices involved are symmetric - it is

sufficient to compute only the lower or upper triangle of the matrix - which is an important

and time saving feature.

known basis functions,

In our applications, every basis function depends on several nonlinear parameters.

The total trial wave function is expanded in thousands of such basis functions, hence it de-

pends on a huge number of linear and nonlinear parameters which have to be optimized with

respect to the energy. During such an optimization the eigenvalue ε of Eq. (4), has to be evalu-

Efficiency of Matrix Elements Computations of Parallel Systems 139

ated mil l ions of t imes. This is a quite t ime-consuming task and it is def ini te ly worth looking

for s o m e sav ings inside the algorithm evaluat ing the goal function, ε .

Every s ingle evaluation of the energy consists of two computationally distinct parts. In

the f i r s t part, the matrix elements h a v e to be updated in accordance with the changes in

the nonlinear parameters governed by an optimization algorithm. E f f o r t needed to compute

a s ing le matrix element depends primari ly on the number of electrons, n, a particular quantum

system is built of, and, roughly speaking, scales as n ! . This n !-dependence of matr ix elements

is a real bottleneck of quantum chemical calculations which prevents the most accurate

methods to be applied to large atoms and molecules. This part of the algorithm operates

most ly on scalar var iables and, because of the mutual independence of the matrix elements, it

suits v e r y wel l any parallelization scheme. In this work we concentrate on this aspect of

the energy computation.

T h e second part - the solution of the GSEP is typical linear a lgebra task and its paral lel iza-

tion is not trivial [3]. However , i f the w o r k needed to compute matrix elements e x c e e d s s ig-

nif icantly the diagonalization e f f o r t then per forming the matrix a lgebra on a s ing le processor

is an acceptable solution. The interplay between these two parts w a s invest igated prev ious ly in

Ref. [4] where we concluded that for quantum systems with t w o elect ions the most t ime

consuming is the matrix a lgebra part but f o r larger systems, with four and more electrons

bui ld ing the matrices requires much more CPU time and, hence, the programmer ' s attention.

The w o r k described in this paper is the step towards improving the e f f i c i e n c y of our

multielectron optimization programs.

3. SETTING UP A CLUSTER

Our cluster w a s set up by means of MPICH - a f ree ly ava i lab le implementation of

the M e s s a g e Pass ing Interface l ibraries created by Mathematics and Computer Science

Divis ion [5, 6]. The " C H " in MPICH stands for "Chameleon", s y m b o l of adaptabil i ty to one's

environment and thus of portability. It has been installed on a s ix-node cluster. Each node w a s

equipped with t w o Pentium III 800 M H z processors with 2 5 6 MB R A M on an SMP (sym-

metric multiprocessor) motherboard. The nodes w e r e connected by means of a 100 MB/s local

network. Our algorithm w a s coded in Fortran 77 under Linux Mandrake 7.2 operat ing system.

Several s imple adjustments of the operating sys tem have to be per formed to enable f u l l func-

tionality of the collection of the nodes as a s ingle cluster. T h e y are shortly descr ibed b e l o w .

One node w a s selected a server (often called master) and the remaining w e r e conf igured as

workstat ions (s laves). A common disk space w a s made avai lable us ing a NFS - network file

system, which a l lows a client node to perform transparent fi le access over the network. To

grant the s laves an access to its disk space the master node requires the f o l l o w i n g entry in

the /etc/exports file

/directory workstation! (rw) workstation2(rw)...

140 M. Torchata and J. Komasa

where /directory is the path name of the served filesystem. On the workstations the file

/etc/fstab was added the following line

server/directory /directory nfs bg,intr,noac 0 0

The machines were set up to communicate through the SSH (Secure Shell) client-server

system. In the iptables file, we allowed traffic on ports f rom 0 to 1023 and on 2049 (input and

output), and we blocked incoming traffic f rom other hosts than these in our cluster.

The Fortran code was compiled and linked by calling a shell script included in the M P I C H

package

./mpif77 -o prog prog.f

In order to run the program we type

./mpirun -np number_of_processes prog

An MPI program written in Fortran has to have in the main module a directive include

'mpif.h'. This file, supplied with the M P I C H distribution, contains all the definitions and func-

tions needed to compile an MPI program. In coding, we used only six MPI functions shortly

described here. The first three of them: MPIJNIT, MPI_COMM_RANK, and MPI_COMM_SIZE

initialize the MPI calculation by setting appropriate variables, the next two functions

MPI_SEND, MPI_RECEIVE perform the interprocess communication, and MPI_FINALIZE con-

cludes the MPI run of the program. Syntax and other details of using these functions can be

found in the MPI documents [7, 8].

Creating an algorithm to be run in parallel we have to realize some issues connected with

physical execution of the j ob on multiple processors. Execution of the mpirun command places

a copy of the executable on a number of processors depending on the value of the option, -np.

Additionally, the user can decide on which nodes the processes are allowed to run through the

option -machinefile file_name, where the file file_name contains a list of the hostnames

accompanied by a number of available processors in the following format:

hos tname1:2

hos tname2:2

Depending on the algorithm coded, different processes can fol low different routes by

executing branching commands referring to the process rank - a non-negative integer. We say

that the MPI program works within the Single Program Multiple Data (SPMD) paradigm.

3.1. L o a d ba lance and p r o g r a m m i n g issues

Having this in mind one can think of load balance issues i.e. a possibly equal distribution

of the work assigned to each process. The parallel program is only as fast as its slowest

component and a good load balance is the main feature of any efficient parallel program.

Efficiency of Matrix Elements Computations of Parallel Systems 141

where η and η1 are the ideal and actual number of matrix elements assigned to the I-th

processor. For instance, when computing the last column of a 1600 x 1600 matrix using

the above mapping and 12 processors we obtain σ = 0.5%. The model described above works

effectively on a cluster built of identical processors. Another interesting issue is how to

balance the workload when a j o b is to be run in an heterogeneous environment. A detailed

discussion on this topic can be found in Refs. [4, 9].

In principle, a parallel algorithm can be based on two different paradigms: symmetric and

nonsymmetric (master-slave). After some numerical experiments we have chosen the latter

model as slightly more effective. We realize, however, that the preferences observed can

revers when the type or even size of the problem changes. A general conclusion from our tests

was that with the currently available network throughput and for the given problem size

(K= 1600) the communication time was not very meaningful and no additional modification

of the algorithm was needed. An example of a simple realization of the ideas described above

is presented in the form of a schematic code listed below.

call MPIJNIT(error)

call MPI_COMM_RANK(MPI_COMM_WORLD, who_am_l, error)

call MPI_COMM_S[ZE(MPI_COMM_WORLD, N, error)

if (who_am_l .eq. 0) then

do j = 1, K

do i = j, K

{DIVIDING TASKS e.g. according to Eq. (5)}

if (I .eq. 0) then

{PROCESS 0 COMPUTES MATRIX ELEMENT}

endif

. enddo

enddo

do source = 1, N-1

(5)

(6)

Computing an upper triangle of a K×K symmetric matrix we used the fol lowing mapping

of the matrix element position (i , j) onto the process number I out of the set of N processes

Such a mapping ensures equal distribution of the matrix elements among the processes.

The number of matrix elements assigned to a process differs at most by one from that assigned

to any other process. To describe this issue quantitatively let us introduce a measure of

the load imbalance [4]

142 M. Torchała and J. Komasa

{RECEIVING MATRIX ELEMENTS using MPI_RECV}

enddo

else

do j = 1, K

do i = j, K

{SEEKING FOR ELEMENTS TO COMPUTE, Eq. (5)}

if (I .eq. who_am_l) then

{COMPUTING AND STORING MATRIX ELEMENT}

endif

enddo

enddo

{SENDING COMPUTED MATRIX ELEMENTS using MPI_SEND}

endif

call MPI_FINALIZE(error)

To estimate the gain obtained f rom the parallelization we measured the time elapsed

between two checkpoints: one placed be fore cal l ing the MPI initialization functions and

the other after the f inal iz ing function. The CPU time T 1 measured f rom within Fortran code

when running on a s ingle processor, without cal l ing MPI functions, w a s then compared to that

Table 1. The dependence of the speedup, SN, and efficiency,
WN, on the number of processors employed

4. RESULTS AND DISCUSSION

obtained for an N-processor j o b , TN, measured on the master processor. A commonly used

measures of the parallelization gain are the speedup

Efficiency of Matrix Elements Computations of Parallel Systems 143

(7)

and the efficiency

(8)

The final numerical experiments were performed for K = 1600. Their results are presented in

a tabular and graphical form. Table 1 presents the dependence of the speedup and efficiency

on the growing number of processors involved in the M P I calculations. Graphically these

results are displayed in Fig. 1. On both graphs, the dashed line marks the theoretical

Fig. 1. The dependence of the speedup, SN, and efficiency WN, on the number of processors employed

limit: SN = N and WN = 1. As can be concluded f rom these pictures and the numerical values

given in the table, the computation of the matrix elements can be parallelized very efficiently

in a simple way.

5. HYPER-THREADING TECHNOLOGY

In certain circumstances, the speedup can exceed the theoretical limit - we speak then of

superlinear speedup. Such a situation can appear when the distribution of the data between

the processors makes better use of the cache memory then in the sequential run. This

additional gain in speed may cause the efficiency to become higher that 1. With the advent of

a new class of processors, which use the so-called Hyper-Threading Technology (HTT) [10],

designed to take advantage of such a feature, an additional increase in the speedup became

possible. With Hyper-Threading Technology each processor has one set of execution

resources (as any regular processor) but its architectural state is duplicated. E.g. one node with

two processors on board can be declared to have total of four logical processors: two real and

two virtual. Each logical processor is capable of responding independently to system

interrupts. Such a configuration results in a more effective use of execution resources.

144 M. Torchała and J. Komasa

Obvious ly , the increase in per formance depends highly on the particular application but

additional performance gain up to 2 5 % has been reported [10].

Table 2. Scaling of the speedup, SN, and efficiency, WN, with the number
of physical processors, N, without and with the Hyper-Threading

Fig. 2. The scaling of the performance in both no-HTT and HTT modes

T a b l e 2 and Figure 2 present results of our own tests per formed on a cluster built of 20

physical processors collected in 10 nodes (Intel X e o n 2.8 GHz x 2 , 5 1 2 M B R A M) . The MPI

program used w a s the same as prev ious ly - no special adaptation to the H T T m o d e w a s

required. A f t e r switching the operating system to the HTT mode the j o b s w e r e run as i f

the number of processes in each node w a s doubled. E.g. to take advantage of all 20 processors

ava i lab le in the H T T regime we run the program with -np 40 option. The e f f ic iency greater

than 1 w a s observed for all processor configurat ions as listed in the last column of T a b l e 2.

The additional boost obtained in the H T T m o d e w a s ca. 11%.

Efficiency of Matrix Elements Computations of Parallel Systems 145

6. CONCLUSIONS

The overall conclusion from our numerical experiments with computing mutually inde-

pendent matrix elements is fa i r ly optimistic. The modification of the source code connected

with the adaptation of the program to the MPI environment is minimal. Scalabi l i ty o b s e r v e d

on the cluster is v e r y encouraging, particularly, when the Hyper-Threading T e c h n o l o g y is

utilized.

Acknowledgment
This work was supported by the Polish State Committee for Scientific Research grants T09A 17118 and
SPB/COST/T-09/DWM572. Support from Poznań Networking and Supercomputing Center is also
gratefully acknowledged.

References
[1] I. Mayer, Simple Theorems, Proofs, and Derivations in Quantum Chemistry, Kluwer Academic

2003.
[2] W. Cencek, The Role of Efficient Programming in Theoretical Chemistry and Physics Problems,

in: Computational Methods in Science and Technology, (edited by J. Rychlewski, J. Węglarz,
K. W. Wojciechowski) Scientific Publishers OWN, Poznań, Vol. 1, 1996, p. 7-18.

[3] J. Komasa, J. Rychlewski, Parallel Computing 26, 999 (2000).
[4] W. Cencek, J. Komasa, and J. Rychlewski, High-performance Computing in Molecular Sciences

in: Handbook on Parallel and Distributed Processing, eds. J. Błażewicz, K. Ecker, B. Plateau,
D. Trystram, Springer 2000, p. 505.

[5] http://www.mcs.anl.gov/.
[6] http://www-unix.mcs.anl.gov/mpi/mpich/.
[7] http://www-unix.mcs.anl.gov/mpi/.
[8] P. S. Pacheco, W. C. Ming, MPI Users' Guide in Fortran,

http: //www.phyast.pitt.edu/beowulf/Tutorial.html.
[9] W. Cencek, High-performance Computing on Heterogeneous Systems, in: Computational Methods

in Science and Technology (edited by J. Rychlewski, J. Węglarz, K. W. Wojciechowski)
Scientific Publishers OWN, Poznań, Vol. 5, 1999, p. 7-19.

[10] http://developer.intel.com/technology/hyperthread/.

http://www.mcs.anl.gov/
http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/
http://www.phyast.pitt.edu/beowulf/Tutorial.html
http://developer.intel.com/technology/hyperthread/

