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Abstract: The use of explicitly correlated wave functions in conjunction with Variational and Diffusion 
Monte Carlo techniques is reviewed. The functional forms investigated are explicitly correlated 
exponentials, exponentials of Pade's approximants, Jastrow functions and the product of determinants 
and a correlation factor. Results for four and six electron systems, namely the anions Li— and B—, are 
presented. 

1. INTRODUCTION 

The main problem of Quantum Chemistry is the accurate description of the correlation 

between particles in atoms and molecules. Mean-field methods, like Hartree-Fock, give 

a qualitative description of atomic and molecular systems, but in order to get quantitative 

results the instantaneous correlation between electrons must be taken into account. The most 

common way to include correlation is, starting from the Hartree-Fock picture, to approximate 

the exact wave function using MC-SCF or CI expansions. Unfortunately, methods based on 

the orbital approximation converge very slowly to the non-relativistic limit. The reason is that 

these wave functions include the interelectronic distances only in an implicit form. 

Furthermore this implicit dependence is quadratic instead of linear, so the cusp conditions [1] 

of the exact wave functions, i.e. the behavior of the wave function when two particles collide, 

are reproduced only for infinite expansions. 

A very efficient and effective approach to accurately describe the local behavior of 

the wave function when two electrons collide is the explicit inclusion of the interelectronic 

distances into an approximate wave function. Hylleraas [2], Pekeris [3], James and Coolidge 

[4], and Kolos and Wolniewicz [5-7] showed that very accurate results for two electron 

systems are obtained by including the interelectronic distance into the wave function. 

Unfortunately, it is not easy to generalize these methods to many-electron systems since 

the resulting integrals are extremely difficult or even impossible to evaluate analytically. 
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results on a variety of two-, three- and four-electron systems, provided that a careful 

optimization of the nonlinear parameters is performed. Unfortunately, this type of function 

poorly reproduces the cusp conditions and this slows down the convergence to the exact wave 

function. In order to overcome this problem, a very large number of functions is required to 

reach high accuracy; but still, this increases the number of nonlinear parameters and makes 

their optimization a very demanding task. Beyond four electron systems, with at most two 

nuclei, the analytical approach becomes almost infeasible [12] and we are not aware of 

published calculations with more than four electrons using ECG functions. 

When integrals cannot be evaluated analytically, one must resort to numerical methods. 

Grid methods cannot be used owing to the high dimensionality of the integrals, so one is left 

with the variational Monte Carlo (VMC) method [14], V M C is a very powerful numerical 

technique to estimate the energy, and all the desired properties, of a given trial wave function 

without any need to compute analytically the matrix elements. The advantage of using V M C is 

that any wave function, even of great functional complexity, can be used: Monte Carlo 

methods require only the evaluation of the wave function, its gradient and its Laplacian, and 

do not impose any restriction on the wave function form since analytical integration is not 

required. An early application of VMC and an example of its capability was the calculation of 

the Born-Oppenheimer potential between two helium atoms using Hylleraas-type electronic 

wave functions [15]. 

2 . W A V E FUNCTION F O R M 

We recently proposed [16-19] to approximate the electronic wave function of an atomic or 

molecular system with N electrons with the linear expansion 

where 

(1) 

(2) 

In this equation is the antisymmetrizer operator,/is a function of all the electron-nucleus 

distances, and g is a function of all the electron-electron distances called the correlation factor. 

Both functions include variational parameters. is an eigenfunction of the spin operators 

and with the correct spin multiplicity. The functions f and g, being dependent only on 

interparticle distances, are rotationally invariant. This means that their product can describe 

only S states, with zero angular momentum. To describe higher angular momentum states, it is 

necessary to include a function F(r) with the correct rotational symmetry, F(r) is a function of 

the Cartesian electronic coordinates (x, y, z), but might include also the electron-nucleus 

distances [18], Ψ is the two-body term of a many-body expansion of the wave function and 

this function might be generalized by including products of the interparticle distances. 
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Various functional forms are possible for the functions f and g. If we use Gaussian 

functions we recover the ECG functional form. However, to assure a high quality wave 

function while retaining the compactness, it is particularly important to satisfy both the cusp 

conditions [1], representing the behavior of the exact wave function at the coalescence of two 

particles, and the asymptotic conditions [20], representing the behavior when one of the parti-

cles goes to infinity. 

The first choice for the functions f and g is a simple exponential of the distance. This 

choice is motivated by the fact that, at particles coalescence, the wave function behaves as 

value. A Jastrow factor [21] g(r) = exp(dr ( l + er)) can satisfy both conditions. 

Another popular and effective approach to building compact explicitly correlated wave 

functions is to multiply a determinantal wave function by a correlation factor, the most 

commonly used being a Jastrow factor. The determinants are generated from analytic 

calculations, in general SCF or MC-SCF calculations, for a given basis set. Then the correla-

tion factor is added, and its variational parameters optimized using VMC calculations. In fact, 

the inclusion of the Jastrow factor does not allow the analytical evaluation of the integrals, so 

one again has to turn to Monte Carlo techniques. 

scence at the nucleus and the decay for large r. 

As to the electron-electron correlation functions, in order to satisfy the cusp conditions, for 

they must go to a constant they should behave as exponentials, while for 

So with different exponents it can accommodate both the coale-

This form is a good choice for the electron-nucleus part, because it is the best compromise 

between flexibility and small number of parameters. In fact this function goes as ear for 

(5) 

suggests that an exponential of all the interparticle distances might be a good choice. Also 

the asymptotic behavior of the wave function is an exponential decay when a particle goes to 

infinity [20]. Application to various small systems showed the rapid convergence of this 

expansion [16, 17]. 

A more flexible function to describe the electron nucleus interaction is an exponential of 

a Pade's approximant 

(4) 

where c is a constant, depending on the type of the colliding particles. The local solution of 

the above equation 

(3) 
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interest are obtained by averaging on the quantities calculated at each point R of the Markov 

chain. Obviously, the greater the number of configurations generated, the smaller is the sta-

tistical error of the calculated quantity. 

As is normally done in standard applications of the Metropolis method, proper care must 

be taken when estimating the statistical error, since the configurations generated by a Markov 

chain are not statistically independent, but are serially correlated. The device of dividing 

If the move is accepted, then the walker is updated, otherwise, the old coordinate is 

retained. The random walk generated by such kind of steps results in an asymptotic 

equilibrium distribution proportional to The expectation value of the observables of 

3.1. Metropol is s a m p l i n g 

In order to generate the distribution proportional to the most common method is 

Metropolis sampling. A Markov chain is generated by "box-sampling" Starting from 

an ensemble of walkers, a new generation is obtained by attempting to move each walker: 

each point is moved by with Δ the box size, and a 3M-dimensional vector 

of uniformly distributed random numbers ζ [-1, + 1]. The move is accepted with probability 

(8) 

ensemble is generated using the Metropolis algorithm [22] or the Langevin algorithm [23]. 

V M C being an application of the Metropolis algorithm to the variational principle, 

the mean energy value of the trial wave function is an upper bound to the exact value and 

the quality of the result depends critically on the trial wave function. 

over an ensemble of configurations distributed as This 

So the expectation value of the energy can be estimated by averaging the local energy 

and the estimate is obtained by generating a large number of points Ri (called configurations 

or walkers) distributed according to 

(6) 

(7) 

3 . T H E V M C A L G O R I T H M 

The VMC algorithm is a stochastic numerical integration scheme. It allows the calculation 

of the expectation value of any operator given a trial wave function ΨT(R). The estimate of 

any desired property of a system is written as: 
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The dependence of the transition probability on the time step results in a time step bias, so 

that the estimated values must be extrapolated to zero time step. 

3.3. Di f fus ion Monte Carlo 

The amount of correlation energy computed by VMC depends on the quality of the trial 

wave function. The recovery of the remaining correlation energy can be done using the diffu-

sion Monte Carlo (DMC) method. Exact results in principle can be obtained projecting out 

where is the transition probability for the particles to move from R' to R. For 

the Langevin equation it is 

where χ is a three-dimensional Gaussian random variable with zero mean and τ/m i variance. 

This equation is used to select an attempted displacement for each particle, which is accepted 

with probability 

( 1 2 ) 

( 1 3 ) 

is called the quantum force and Di = 1 / ( 2 / m i ) is the diffusion coefficient for a given particle. 

The simulation is realized using the Langevin equation 

( 1 1 ) 

( 1 0 ) 

( 9 ) 

where 

equation: 

the simulation into blocks of sufficient length, and computing the statistical error only over 

the block averages, is usually sufficient to eliminate this problem. 

3.2. Langev in s a m p l i n g 

The sampling efficiency of the simple Metropolis algorithm can be improved when one 

switches to the Langevin simulation scheme. In order to obtain a distribution proportional to 

in the Langevin approach one simulates the Fokker-Planck differential 

the exact ground state of the time-independent Schrödinger equation, , from any initial 
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where the only difference with the Fokker-Planck equation, used in VMC, is the additional 

term [ER - E l ( R ) ] f ( R , τ ) . This is simulated varying the population of the configurations 

during the simulation. In order to maintain the diffusion analogy, f ( R , τ ) rather than Ψ ( R , τ ) 

must be positive definite. The most commonly used way to overcome this problem is to 

employ the fixed-node approximation [24]: the nodes of Ψ T (R) are imposed as a boundary 

condition upon the evolving solution Ψ ( R , τ ) . This boundary condition ensures that f ( R , τ ) 

is positive definite since ΨT(R) and Ψ(R,τ) have the same sign for all R . If the nodes of 

will be exactly E0 (i.e., there would be no inaccuracy), otherwise it can be shown that it is an 

upper bound to E0 In any case most of the correlation energy is recovered by FN-DMC 

calculations. Since this method is already well described in the literature, details can be found 

in the available reviews [14, 25]. 

The DMC energy can be evaluated by means of the mixed estimator 

ΨT(R) coincide with those of the exact wave function , the fixed-node DMC energy 

(17) 

( 1 6 ) 

In this case, the time dependent Schrodinger equation in imaginary time takes the form 

(15) 

is analogous to a classical diffusion equation, along with a birth/death process that mimics 

a reaction exhibiting first-order kinetics. In order to make feasible this kind of interpretation, 

the wave function must be considered a probability density. This constraint is always verified 

for symmetric (bosonic) ground-states, but presents difficulties when treating excited state 

wave functions (including fermions ground-state wave functions) that change sign as nodes 

are crossed: in these cases, the classical analogy breaks down. 

Usually DMC simulations employ the importance sampling technique [14]. A trial wave 

function ΨT(R) is used to bias the random walk so as to sample a different probability 

distribution f(R,τ), where 

(14) 

distribution ΨT (R, 0) not orthogonal to using the DMC method. From a formal point 

of view, the time dependent Schrödinger equation in imaginary time 
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The naive application of the variational principle to the optimization problem is affected 

by the statistical uncertainty inherent in every Monte Carlo calculation, because the conver-

gence of the optimization depends on its magnitude. 

The optimization may be carried out both in the framework of V M C and DMC. 

5.1. V a r i a n c e opt imizat ion 

The statistical error in any VMC estimate of the energy obtained using N sample points is 

related to the fluctuation of the local energy function. Specifically, 

(19) 

which provides an upper bound to the exact ground state energy E0. Thus the better the energy 

approaches the exact energy, the better is the wave function. Consequently, the best wave 

function is the exact wave function. 

Let us choose a family of trial wave functions Ψ T (R;c) , where c is a vector of parameters 

( 1 8 ) 

c {c I ,c 2 , . . . ,c , l } on which the wave function depends parametrically. The best function in 

the family is selected by solving the problem 

The trial wave function is used to guide the walk of the configurations in the space, to 

reduce the fluctuations of the population simulating the birth-death process described by 

the term [ER - E l ( R ) ] f ( R , τ ) and to compute the energy by means of the mixed estimator. 

4 . T R I A L W A V E F U N C T I O N O P T I M I Z A T I O N 

For a given system, the exact wave function is not known a priori. Nevertheless, it is 

possible to write down a wave function that depends on some parameters and try to obtain 

the best parameters for that system. Moreover, if possible one would like to be able to 

arbitrarily improve the "goodness" of the description, in order to approach the true wave 

function. The general scheme of optimization starts from an initial choice of the parameters of 

the wave function. After the evaluation of the quantity one wants to minimize, a new set of 

parameters is selected modifying the old ones. If the new parameters give a "better" wave 

function, they are retained. Note that the term "better" is referred to the wave function that 

minimizes the observable that one wants to minimize. This procedure is iterative, and is 

repeated until convergence is reached. 

5 . E N E R G Y O P T I M I Z A T I O N 

The commonly used criterion of goodness is given by the variational principle 
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There are advantages in using the "sigma variational principle" instead of the more 

common "energy variational principle." Firstly, the minimum possible value, namely zero, is 

exactly known and is obtained only for the exact wave function. The minimum value of 

the energy, on the other hand, is not known. A second quality is that this variational principle 

can also be used for excited states, and not just for the first state of a given symmetry: 

σ 2 ( H ) is a minimum for any state. This is in contrast with the energy variational principle, 

where for an arbitrary stationary state the energy is not necessarily required to be a local 

minimum. 

Instead of minimizing σ2(H), sometimes it is preferable to optimize a related quantity, 

namely the second moment of the local energy with respect to a fixed (or reference) energy 

ER, 

( 2 5 ) 

( 2 4 ) 

( 2 3 ) 

( 2 2 ) 

We can now rewrite Eq. 21 as 

Optimizing a wave function using this principle means solving the problem 

Suppose the exact wave function is known: in that case the local energy would be 

a constant over the whole configuration space, and the error in its estimate would be rigor-

ously zero. Similarly, if very good wave functions could be obtained, the fluctuations of 

the local energy would be very small. The error thus provides a measure of the quality of the 

trial wave function. This leads naturally to the idea of optimizing the wave function by 

minimizing the error of the estimate. It is easy to see that 

so that 

where 

( 2 1 ) 

( 2 0 ) 
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This last form of minimization procedure is preferable when looking for an excited state, 

since by a careful choice of the reference energy one can prevent falling to the ground state. 

5.2. Robust optimization procedures 

The assumption of an underlying Gaussian distribution of the local energy, implicit in 

the standard variance minimization scheme, sometimes is not justified and generates 

convergence problems. Among the algorithms that can be chosen, the minimization of 

the mean absolute deviation is usually more reliable than the variance minimization, void of 

convergence problems, and able to generate trial wave functions with better variational 

energies [26]. 

6. RESULTS AND DISCUSSION 

In order to show the capabilities of quantum Monte Carlo techniques to deal with explicitly 

correlated wave functions, we performed calculations on the negative ions of lithium and 

boron. The choice of atomic anions is dictated by the fact that they show very strong 

correlation effects, and are a challenge for standard quantum chemistry methods. 

For Li– in its ground state we adopted a single term wave function with different functional 

forms for the electron-nucleus and electron-electron functions. All functions were optimized 

minimizing the variance of the local energy. From Table 1 one can see that 85.4% of 

the correlation energy is recovered with a single exponential term. A substantial improvement 

can be gained using a Jastrow factor as the electron-electron correlation factor and another 

millihartree can be recovered by using the more flexible Pade' as the electron-nucleus 

correlation function instead of the simple exponential form. Despite the fast convergence of 

this approach, in practice it is not possible to use this kind of function for more than four or 

five electrons: the weak point of the method lies in the N! cost generated by the anti-

symmetrizer operator. This weakness is shared with the ECG approach. One way to get 

around this problem is to use, as electron-electron correlation function, the same function for 

every electron pair. In this way the electron-electron part becomes totally symmetric and drops 

out of the antisymmetrizer operator. The remaining electron-nucleus part can now be 

expressed as a sum of few determinants, lowering the computational scaling cost from N! to 

N3 roughly. The energy recovered using a symmetric Jastrow, despite the lower number of 

variational parameters, is only slightly higher than the value computed without this constraint. 

This is a very important observation since it shows that using different parameters for different 

pairs of electrons is not necessary and prevents a more efficient evaluation of the wave 

function. 

A single term wave function already recovers more than 95% of correlation energy. It 

would be possible to improve the trial wave function by adding more terms in the linear 
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expansion. However when used in a Diffusion Monte Carlo calculation, more than 99.9% of 

the correlation energy is recovered. 

Table 1. Li– results 

aRef. [27], bRef. [28] 

As a second example, we show results for the six-electron system B–. To avoid the 

problem of the 720 permutations generated by the antisymmetrizer operating on a product of 

exponential functions, the wave functions was written as product of a determinantal part times 

an electron-electron correlation factor written as product of Jastrow factors for every electron 

pair 

Table 2. B– results 

a Ref. [27] 

The SCF wave function was calculated using the Hartree-Fock functions for the anion 

[27]. The d Jastrow parameter was fixed to satisfy the electron-electron cusp condition, while 

the remaining e parameter was optimized minimizing the energy variance. In a second 

calculation the configuration 1s2 2p4 was added to the Hartree-Fock 1s2 2s2 2 p 2 , the relative 

weights were the result of a configuration interaction calculation. The results of VMC 

calculations with these two trial wave functions are reported in Table 2 together with the DMC 

value computed using the second trial wave function. The non-relativistic limit for the anion 

( 2 6 ) 
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was computed from the estimated NR limit of the neutral atom [29] and the experimental 

electron affinity [30]. 

This form of trial wave function allows us to recover about half of the correlation energy 

by VMC calculations. The VMC energy computed by Moskowitz and Schmidt [31] is 

-24.6243(1) hartree (72% of the correlation energy). They used a more sophisticated electron-

electron correlation factor including 17 parameters. The product of correlated exponentials for 

Li– was able to recover roughly 95% of correlation energy: even taking into account 

the smaller number of electrons, the comparison evidences the better efficiency of fully 

correlated exponential functions than the product of a determinantal function and a correlation 

factor. DMC again outperforms VMC, but its result depends on the nodal surface defined by 

the determinantal part of the trial wave function. 

7. CONCLUSIONS 

In this paper we have shown that the use of explicitly correlated trial wave functions, 

coupled with quantum Monte Carlo techniques, permits the calculation of very accurate 

energies. For the lithium anion, using the full antisymmetrizer operator and no constraints on 

the variational parameters, we recovered 95% of the correlation energy, at the variational 

level, and more than 99% at the DMC level. However, the computational cost of such an 

approach scales as N! and quickly becomes infeasible as the number N of electrons grows. We 

showed that the worsening of the wave function, when the electron-electron parameters are 

constrained to be the same, is very mild, but now the computational cost scales as N3, the cost 

of a determinant evaluation. We performed calculations on a determinantal function times a 

Jastrow factor for B– recovering 52.5% of the correlation energy at VMC level and 94.7% at 

DMC level. 
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