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Abstract : Variational calculations of the 2 P 1 / 2 ground state of boron atom are performed using a single-

term reference wave function and a 150-term wave function expansion without interelectronic distances. 

The wave function is constructed with hydrogenlike orbitals. These orbitals are superior to Slater 

orbitals, because the orbital 2s contains nodes. The calculated energy -24.550233 a.u. is compared with 

-24.541246 a.u. using Slater orbitals and the same basis function expansion, and with -24.5689998 a.u. 

obtained from full-CI calculations using a 4-31G basis set. The single-term wave function constructed 

with hydrogenlike orbitals leads to an energy value o f-24.501187 a.u., which is lower than the Hartree-

Fock energy using a single-zeta basis set of Slater orbitals and it is also lower than with a single-term 

wave function with Slater orbitals, both lead to an energy of-24.498369 a.u. The behavior of the node of 

the 2s orbital and its radial distribution function of the wave function series are discussed. 

1. INTRODUCTION 

Hydrogenl ike orbitals contain a polynomial in r whi le the Slater orbitals are monomial . In 

addition, the hydrogenl ike orbitals h a v e nodes. Hydrogenl ike orbitals h a v e been used in 

calculations of the f i rs t r o w atoms by Zener [1] and Eckart [2]. The energy results w e r e 

equivalent to the ones obtained with Slater orbitals [3]. Indeed, a hydrogenl ike orbital is a 

linear combination of Slater ones [4]. Other similar orbitals w e r e used by M o r s e [5] and T u b i s 

[6]. In this article we u s e a 2s orbital of Morse-type with t w o ad jus tab le parameters . 

The purpose of this work is to use hydrogenl ike atomic orbitals to improve the quality of 

the orbitals of a single-term and many-term w a v e functions, in order to h a v e a g o o d starting 

reference w a v e function for a ful l-Hylleraas calculation. T h e Hyl leraas method [7] is a varia-

tional method which introduces the correlation e f fec t s by including expl ici t ly the inter-

electronic distances in the w a v e function. 

The Hylleraas-type w a v e functions are linear expansions of bas i s funct ions containing 

interelectronic coordinates w h o s e coef f ic ients are determined variationally. The calculations 

of the atoms helium [8] (other sets of basis functions have been also used), lithium [9-11, 14], 

and beryl l ium [12, 13] yie lded energies close to the experiments. Parallel to the Hyl leraas 
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method, Hylleraas-CI and exponential ly correlated w a v e functions y ie lded highly accurate 

energy results for helium [15], lithium [16], beryl l ium [17-19] and boron [20] atoms. 

Recently, calculations on the ground state of boron atom h a v e been m a d e us ing the single-

term and 150-term w a v e functions constructed with Slater orbitals [21]. The obtained energies 

lie between the Hartree-Fock and the CI energies, including about 28 per cent of the correla-

tion energy. In this paper we use the same w a v e function but constructed with hydrogenl ike 

orbitals and we compare with the results using Slater ones. 

2. THEORY 

The w a v e function of the 2 P 1 / 2 state of boron atom is written: 

(1) 

where is the spatial function, is the 5-particle antisymmetrization operator, is the spin 

function αβαβα . Since it is poss ib le to m a k e the restriction of us ing the same spatial function 

for t w o electrons in the same shell, the single-determined w a v e function is e igenfunction 

of with e igenva lue M s = M z, M z be ing the e igenvalue of . Moreover, the spatial 

functions m a y be chosen such that the total w a v e function is e igenfunction of 

We construct a trial w a v e function as the expansion [10] 

(2) 

w h e r e the constants Cμ, are determined variationally. The N bas i s functions , are products 

of radial and angular functions of hydrogenl ike orbitals: 

(3) 

(4) 

(5) 

with b as a constant to be optimized and i1, i2, i3, i4, and i5 are integers The orbital expo-

nents should be optimized. For the case of boron atom, with n = 5, the unpaired electron is in 

a p-orbital, and in the non-relativistic theory, the three p-orbitals are degenerate in energy. 

The Hyl leraas ground state w a v e function is a function of distance coordinates of every 

also function of the polar angles and of the electrons [21]. As a f i rs t step of a full-

Hyl leraas calculation, the w a v e function will not yet include r i j terms. 

electron and the interelectronic coordinates. In the case n 5 the Hyl leraas w a v e function is 
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(8) 

1 This fact makes the calculation of matrix elements more cumbersome as if one uses the basis function 
with Slater orbitals [21] 

(10) 

(9) 

As the general Hylleraas w a v e function has explicit angular dependence (and also depends 

on r i j) it is convenient to transform the kinetic energy part into mutual ly independent distance 

coordinates r i , r i j and polar angles and T h e derivation is g iven in detail in [21]: 

plicity i j instead i iμ), i1 = i2 and i3 = i4, and i5 independent of the others, ensures that the w a v e 

function is spin-eigenfunction. The w a v e functions (6), (7) can be evaluated into a linear com-

bination of four bas i s functions constructed with Slater orbitals 1 with factors in b. The orbital 

exponents a, β, γ and the constant b are parameters which are optimized us ing a s imple 

parabol ic procedure. 

T h e nonrelativist ic Hamiltonian f o r n electrons in the f ie ld of a f i x e d nucleus of charge Z is 

(in a.u.): 

w h e r e i i μ are integers with i i μ 0. The restriction f o r a g i v e n bas i s function (using f o r s im-

(7) 

A general bas i s function with the p o w e r s of the 2s orbital inside of the bracket, (and not 

outside of the bracket as would be with truly hydrogen atomic orbitals) is: 

(6) 

T h e single-term w a v e function of f ive-e lect rons is: 



104 M. B. Ruiz and M. Rojas 

The v o l u m e element is: 

(11) 

(12) 

(13) 

(14) 

As the antisymmetrization operator commutes with the Hamiltonian and is idempotent, 

after " sp in integration" we have: 

(15) 

(16) 

The partial der ivat ives operate on the corresponding coordinates only where they appear 

expl ici t ly in the w a v e function. For a bas i s function of the type of Eqs. (6), (7) which does not 

depend on the interelectronic coordinates, the Hamiltonian of Eq. (10) is e f f e c t i v e l y reduced to 

From the variational principle one obtains the matrix e igenvalue problem 

w h e r e the matrix elements are 

On the left-hand side, the di f ferent terms are generated by the f o l l o w i n g permutations of 

the initial one 

coordinates of electrons i and j . If we evaluate now H μ v we h a v e four terms on the right hand 

s ide and 1 2 x 4 terms on the left hand side, which are products of Slater orbitals. 

As in the case with Slater orbitals [21], the evaluation of the matrix element of Eq. (16) 

leads to the types of integrals: one-electron integrals, two-electron integrals, two-electron one-

angle integrals: 

where is the unit operator and is the permutation operator which interchanges the spatial 
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w h e r e s i j is the smallest of r i and rj, and g i j the largest of r i and rj. 

T h e result ing integrals in the Hylleraas method h a v e been d e v e l o p e d into p r o g r a m m a b l e 

express ions us ing the M A P L E [22] program package. The one-electron and two-electron 

Slater integrals are so lved with the help of auxil iary integrals [9]. T h e y are once calculated 

and stored, and read when it is necessary. 

The optimization procedure is s imple. The three orbital exponents and the constant b are 

optimized one after the other us ing a numerical one-dimensional procedure. A three-point 

parabol ic f i t t ing is mixed with t w o other procedures which are the selection of the point with 

lower energy and the bes t virial coeff ic ient . Each var iable is changed with a d i f fe rent step-size 

which decreases with the cycles of optimization. For each energy calculation the vir ial 

coef f ic ient is calculated to check the accuracy of the calculation. 

(17) 

(18) 

and two-electron two-angle integrals: 

3 . C A L C U L A T I O N S 

T h e f i rs t basis function Eq. (6), can be considered as an approximation to the Hartree-

Fock w a v e function constructed with medium s ize bas i s set of orbitals. 

Then the energy is g iven by 

(19) 

(20) 

where We need a condition to calculate the energy of the state. The condition is 

that the virial theorem should be fu l l f i l ed . T h e r e f o r e a factor η, the ratio be tween potential 

<V> and kinetic energies <T> should be precise ly 2 10 1 0. This factor η is evaluated in e v e r y 

calculation to ensure that the state is the appropriate one: 

T h e optimization of the exponents α, β, γ and the constant b leads to the energy 

E1 = 2 4 . 5 0 1 1 8 7 a.u., virial factor η = 1.9999999999, α = 4.688051, β = 1.357372 γ = 1.204539 

and b = 6 . 5 2 4 2 . This energy is lower than the energy the calculated with Slater orbitals [21] 

- 2 4 . 4 9 8 3 6 9 a.u. The optimized exponents α, γ , of the w a v e function with hydrogen-l ike 
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orbitals are v e r y c lose to those obtained using the w a v e function with Slater orbitals, α = 

4 . 6 7 9 4 1 9 6 , γ = 1 .2106724. The reason is that the 1s and 2p orbitals have the same f o r m in 

both w a v e functions and they are only w e a k l y dependent on the form of the 2s orbital. As it is 

expected, the exponent of the 2s orbital is d i f ferent compared with β = 1 . 2 8 8 0 8 5 3 for Slater 

orbitals . In the optimization of b one f inds a v e r y f lat parabola. 

The energy lies between the Hartree-Fock energy - 2 4 . 4 9 8 3 6 9 a.u. calculated us ing a 

s ingle-zeta basis set and - 2 4 . 5 2 7 9 2 0 a.u. obtained with a double-zeta bas i s set [23]. Other 

results are g iven in T a b l e IV. The energy obtained us ing hydrogenl ike orbitals is lower than 

us ing Slater orbitals. 

In this method the energy is improved by adding new basis functions in a systematic w a y , 

f rom i j = 0 until i j = 7, in some cases i j = 9, ordered by similarity to facil itate the optimization 

of the exponents. The orbital exponents and the constant b have been optimized for every 

g roup of similar bas i s functions which is added. We have used the same basis function 

expansion than in the previous calculations with Slater orbitals [21]. In T a b l e 1, the p o w e r s of 

the orbitals of the bas i s functions are g iven. For example, the bas i s functions 1 to 38 introduce 

flexibility to the outer electrons. The bas i s functions 39 to 57 g i v e flexibility to the inner 

electrons. The rest of the basis functions introduces some correlation e f fec t s due to the use of 

more extended orbitals. 

The energy results are shown in Table 2, together with the energies of those basis function 

expans ions using Slater orbitals. For the f i rs t eight basis functions we have i 3, i 4

 = 0, as 

the bas i s set is the same, the form of the hydrogenl ike orbital 2s coincides with the Slater one 

for these bas i s funct ions except for a factor, therefore the energy results for both w a v e 

funct ions are equal. Taking more bas i s functions, the w a v e function of hydrogenic orbitals 

lead to an energy about 1 mhartree lower than the energy calculated with Slater orbitals. 

The d i f fe rence increases with increasing number up to 150 basis functions. The f inal energy 

for N = 150 is E 1 5 0 = - 2 4 . 5 5 0 2 3 3 a.u., 8.98 mhartree lower than the energy with Slater basis 

functions. This energy includes about 33 per cent of the total correlation energy for boron 

atom. 6 per cent more correlation energy have been obtained us ing hydrogenl ike orbitals 

instead of Slater ones. This is due that they are physical ly more appropiate and to the presence 

of one more variational parameter, the constant b. 

T h e optimized exponents and constants are g iven in T a b l e 3. The f inal exponents are 

α = 4 . 5 2 0 8 8 4 , β = 1.338861, and γ = 0 . 7 5 0 8 4 6 , and the constant is fitted to b = 2 .398. These 

exponents are s l ightly smaller than the ones calculated using Slater orbitals. In the f i rs t bas i s 

funct ions α and γ coincide with the ones of Slater, but not β . A d d i n g more bas i s functions 

the exponents became more dif ferent. In contrary, the β exponent became more c lose to 

the Slater one. 

In Figure 1 the radial distribution functions of the Slater and hydrogenic 2s orbital us ing 

the optimized parameters of the 150-term w a v e function are shown. The hydrogenic orbital 
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Table 1. Basis function powers: 
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Table 2. Energies (in a.u.) for a given number of basis functions, using Slater orbitals [21], and 
hydrogenlike orbitals in the wave function, respectively. In addition the difference E(hydrogenlike) -

E(Slater) is given 

Fig. 1. Radial distribution function of the 2s 
hydrogenlike orbital (with a node) and the Slater 
type one calculated with the optimized exponents 
of a 150-term wave function 

has a node and the maximal probability at larger distance. For i3, i4 = 1 the hydrogenlike 

orbital coincides with the hydrogenic orbital. 

In Figures 2 and 3 the radial distribution functions of the 2s orbitals with different powers 

i3, i4 show different behavior at small r. The hydrogenlike orbitals present nodes, which move 

to large with increasing powers. The Slater orbitals have a maximum at nearer distances to 
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the nucleus than the hydrogenlike ones. In both Figures the probability to find the electron is 

higher for power 1 and decreases with increasing power. 

Table 3. Results using hydrogenlike orbitals: energies in (a. u.) for a given number of basis functions, 
optimized orbital exponents and orbital coefficient b, and virial coefficient 
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Fig. 2. Radial distribution functions of the 2s 
hydrogenlike orbitals with different powers of r, 
i3 = i4 from Eq. (7). Calculated with the opti-
mized exponents of the 150-term wave function 

Fig. 3. Radial distribution functions of the 2s 
Slater orbitals with different powers in r, i3 = i4 

from Eq. (8). Calculated with the optimized 
exponents of the 150-term wave function 

Table 4. Comparison of the energies for boron atom calculated with different methods and the 
nonrelativistic energy (all values in a.u.) 

Small geom. stands for small geometrical basis set, large geom. for large geometrical basis set, DZV for 
valencc double zeta basis and DZP for double zeta basis with polarization functions. In the literature, 
usually the best HF energy value is quoted as only HF, this is -24.52905 a.u. 
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Finally, in Table 4 we compare our energy results with the ones of other methods. 

The 150-term energy obtained using hydrogenlike orbitals is lower by 19.3 mhartrees than 

the energy of a full-CI wave function with 4-31G basis set [28]. It is also lower than numerical 

HF calculations. The calculated energy is higher by 10.1 mhartrees than the multireference CI 

energy [29], and 18.7 mhartrees higher than the full-CI energy using a double-zeta basis set. 

The energy using polarization basis functions is still lower. A similar energy to the full-CI 

using medium size basis set (DZV) could probably be achieved if the expansion serie would 

be extended to a larger number of basis functions. Nevertheless, our purpose is to introduce 

more correlation energy introducing interelectronic coordinates into the wave function, this 

work is in progress. 

4. C O N C L U S I O N S 

Substituting the 2s Slater orbital by the hydrogenlike 2s one into the reference Hylleraas 

wave function the energy result improves by 6 per cent for a large number of basis functions. 

This is due, on the one hand, to the higher quality of the 2s orbital, which has a node, as the 

exact solution of Schrödinger equation of the hydrogen atom. On the other hand, it is due to 

the presence of an aditional variational parameter. The orbitals with high powers in r of 

the expansion series are not exactly Slater neither hydrogenic, they are of s-type. It can be 

understood as a basis function set inside of a shell. The obtained energy approaches the full-CI 

calculations using valence double-zeta basis set. We expect to introduce more correlation 

effects by introducing in this reference wave function interelectronic variables. This work is in 

progress. 

Finally, the calculated energy is comparable with the energy of full-CI calculations. 
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