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Abstract. In our previous paper [1] we have considered implicit interval multistep methods of Adams-
Moulton type for solving the initial value problem. On the basis of these methods and the explicit ones in-
troduced by Sokin [2] we wanted to construct predictor-corrector (explicit-implicit) interval methods. How-
ever, it turned out that the formulas given by Sokin are incorrect even in the simplest case. Therefore, in this
paper we direct our attention to the explicit interval methods of Adams-Bashforth type and modify the for-
mulas of Sokin. For the modified explicit interval methods it is proved, like for the implicit interval methods
considered in [1], that the exact solution of the problem belongs to interval-solutions obtained by these
methods. Moreover, it is shown an estimation of the widths of such interval-solutions.

1. INTRODUCTION

Explicit interval methods for solving the initial value problem have been considered and
analyzed in a number of papers and monographs (see e.g. [2] - [11]). Such methods are inte-
resting due to interval-solutions obtained which contain their errors. Computer implementation
of the interval methods in floating-point interval arithmetic together with the representation of
initial data in the form of machine intervals, i.e. by intervals which ends are equal or neighboring
machine numbers, let us achieve interval-solutions which contain all possible numerical errors.

In this paper we direct our attention to the explicit interval methods of Adams-Bashforth type.
Such methods have been considered by Sokin [2], Unfortunately, it can be shown that the for-
mulas given by Sokin fail even in the simplest case, i.e. when the number of steps equals 1 (see
Sec. 3). For this reason we modified Sokin's formula and showed that methods that we obtained
produce the interval-solution that includes the exact solution of the initial value problem.

This paper consists of six sections. In Sec. 2 we define the initial value problem and shortly
present the conventional explicit Adams-Bashforth methods. Our modified interval formulas of
their conventional equivalents are introduced in Sec. 3. In this section we also show an example
of the initial value problem which interval-solution is incorrect when we apply the formulas pro-
posed by Sokin. It is shown that our modified formulas give a correct interval-solution. In Sec. 4
we prove that the exact solution of the initial value problem belongs to interval-solutions obtained
by the interval methods of Adams-Bashforth type. In Sec. 5 we estimate the widths of interval-
solutions obtained by the considered interval methods. At the end of our paper we draw some re-
marks (Sec. 6).
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2. THE INITIAL VALUE PROBLEM
AND CONVENTIONAL ADAMS-BASHFORTH METHODS
As we know the initial value problem is concerned with finding the solution y = y(f) to a

problem of the form

y(1)=1(1 (1)), 2.1

subject to an initial condition

y(0)= o,

where 1 €[0,&],y € RY and f:00,E]xR M 5 RY. We will assume that the solution of
(2.1) exists and is unique.
Let us choose a positive integer m and select the mesh points i, i, ..., ¢

foreach n = 0,1,..., m and h &/m. Assumethataninteger £k = 1, 2,... will state how many

., where ¢, =nh
approximations  y,,, Y, .. Vi of the exact solution at the previous & mesh points
have to be known to determine the approximation y, at the point 7.

As shown in [12] the exact solution of (2.1) considered on the interval [t,, —1» t"] has the
form

k—1 _ '
)'(tn)z }’(f,,_l)+11 E Yjv"f(tn — b y(’n—l))'*'hk +1Yk W(T]» )’(‘ﬂ)), (2.2)
j=0
where .
. J j
ij(tn -1 )’(tn —1)):’"2:: (—l)m(m]f(tn —1—m> y(tn —l—m ))’
I (2.3)
Yo =1, yj=17js(s+1)...(s+j—1)ds for j=1,2,...,k,
It
ana w(n ym)= F O ym)= ¢ m), nefn_in]
After replacing the unknown values with  y(z, ), y(t, ), ey y(t,.)) approxi-

mations  y,, V... ey Voo obtained by applying another method (for example by a

k+1

Runge-Kuttamethod,seee.g.[12]-[17])and neglectingtheerrorterm#A” vy, (0, y(n)) we

are given the following formula known as the &-step implicit Adams-Bashforth method (see also
e.g. [12] - [17])

k-1 _
)’n:yn—l+hz Yjvjfn—l’ (2.4)
j=0

where f,, = f (¢, y,.).
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3. EXPLICIT INTERVAL MULTISTEP METHODS
OF ADAMS-BASHFORTH TYPE

Let us denote:
A,and A -setsinwhich the functionf(#, y) isdefined, i.e.

A, ={teR: 01 <E},
Ay={y=(yy9,.yp) €RM b, <y <bi, =12, N},

HT,Y) - an interval extension of f (¢, y) (for a definition ofinterval extension see e.g. [2],
[11] or [18]),
W(T, Y) - an interval extension of V(¢, y).

Let the assumptions about F(7,Y) and W(T7,Y) be the same as in [1] and [2], Moreover let
us assume that y(O)E Yy and the intervals Y, such as y( )EY for i=1, 2,..., k-1 are
known. We can obtain such Y, by applying interval one-step method, for example an interval
method of Runge-Kutta type (see [19] or [20]). Then the explicit interval method of Adams-Bash-
forth type constructed by Sokin is given by the formula.

Yu :Yn—l +h('Y0Fn—l +’YIVF11—1 +Y2V2Fu-—l +Yk—lvk~an—l)

(3.1)
Ry B(T, (k=D 0L Y, g + -k = DA 01F (A, 4, )
for n =k k +1,.., m, where
Fn—le(Tn—l’Yn—l)’

11

Yo =1, y]=7j s(s+1) . (s+j-Dds, j=1,2,...,k, (3.2)
0

h=§, t;=iheT;, i=0,1,...,m

Unfortunately, it can be shown that the formula (3.1) fails in the simplest case, i.e. when
k = 1. For example, let us consider the initial value problem of the form

(3.3
where t €[0,1]. The exact solution of this problem is given by
y(t) = exp(0.5t). (3.4)

Applying (3.1) for m = 2000, h =0,0005 and Y, = [0, 0], we get (in floating-point interval
arithmetic) the interval-solution of the initial value problem (3.3) at t = 1 as follows

Y(1)=[1.64872126211491595, 1.64872126211491651].
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On the other hand the formula (3.4) yields the exact solution

Vesaer (1) =1.64872127070012815,

This simple example shows that y, ..., (1)&2 Y(I), and hence Y(1) isnot the correct interval-
solution of the initial value problem (3.3).

After careful consideration of the Sokin formula (3.1), we have found that thereason for such
behavior of the method is defective error term of the form

hk+lykl}1(1‘n_l +[=(k =1k, 01,7, ; +[=(k =D)h, 01F (A,, Ay)). (3.5)

As we checked, the formula (3.5) does not improve the interval-solution, and for this reason
getting the correct result becomes impossible. Detailed study of conventional Adams-Bashforth
methods led us to make some essential modifications. The correct error term should be written
as follows

Lk +1qu:(T” (k= Dh, B Y, _y +[=(k =Dk, BIF (A, Ay)). (3.6)

Substituting (3.6) into (3.1) we obtain the correct formulafor interval methods of Adams-Bash-
forth type of the following form:

Yn :Yn—l +h('Y0Fn—l +Y1VF11—1 +Y2V2Fn—l +"'+'Yk—,lvk—an-—l)
, (3.7)
T B(T, (kDR RL Y, 4=k =D RIF(8,, 4, ),

where n = k, k +1,..., m.
In particular for a given k we get the following methods:
® k=] =

2
%—‘P(T,, L0, B, Y,y +10, RIF (A, A, ))

Yn :Yn—-l +hF(Tn—l’Yn—l)+
e Lr=2 =
Yn =Yn—l +12i(3F(Tn—-l’Yn—l)_F(Tn—Z’Yn—Z))

513
+~1—2—‘P(T,,_1 b, B Y, g + Lok BIF(8, 4, ),

® =3 =
v, =Y,_, +1’i2(23F(T,,_1,Y,l_,)—16F(T,,_2,Y,,_2)+5F(T,,_3,Y,,_3))

3h '
+T‘P(T,, 1 [=2h, B Y,y =2k, BIF (A, Ay)).
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Since
VjF(T"__l,Y”__l)_ 2( 1)’”(”) (n—l—ern—-l—m)’
m=0

the formula (3.7) can be written in the equivalent form

Y, "_I+hZBL] (n—j’ ""J)

j=1 (3.8
,lexy( w1 =k =D, B Y, g+ == DR, RF (A, Ay)),

where
i—1 k1 m .
Bka(—l) 2 ) Yoms j=L2,... k.
m=j—1 ]_1

Now, for comparison, let us apply modified formula (3.7) (or (3.8)) with k = 1 to theinitial
value problem (3.3). For m = 2000, h =0,0005 and Y, = [0, 0] we get the interval-solution
a t=1 asfollows

Y (1) = [1.6487212621 1491595, 1.64872128787216209],

and we have y,. .. (1) € Y(l). Thus, in this case we have obtained the correct interval-solution
of the initial value problem (3.3)

4. THE EXACT SOLUTION VS. INTERVAL SOLUTIONS

For the method (3.7) we can prove that the exact solution of the initial value problem (2.1)
belongs to the intervals obtained by this method. Before that it is convenient to present the
following

Lemmal. If (t,-,y(t,-)) ( i ,) fori=n—-k,n—k+1,...,n—1, where Y; = Y (t;), than
forany j =0,1,..., k-1 we have

ij(tn——l’ Y(f,,_j))EVjF(Tn—l,Y,;_l)- 4.1)

Proof. Since F(T,Y) is an interval extension of f(ty), and (t,-, y(t,-))e(T,-,Y,-) for
i=n-kn-k+1,...,n-1, we can write

f(tn——l—m’ )'(fn—l—m))EF(Tn-—l—m’Yll—l—m)! m=0,1,.,., ]

This implies that
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Ej: (—1)’”(”?) f(tn —1—m» Y([n —1—-m )) € ZJ‘J (_1)"1(";] F(T” -1 _""’ Y” —1-m ) (4.2)

m=70 J m=0
But :
Lo [ j

E (-1 F(Tn—l—m!Yn—l——m):V F(Tn—l’yn—l)' (4.3)

m=>0 m

From (2.3), (4.2) and (4.3) theinclusion (4.1) follows immediately.

Theorem 1. If y(O)e Yy and y(t,-)e Y; for i=1,2, ..k-1, then for the exact solution
y(t) of theinitial value problem (2.1) we have

)’(tn)eyn

for n=k k+1,..., m, where Y, = Y(t,) areobtained from the method (3.7).
Proof. Let us consider the formula (2.2) for n = k. We get

y(t)= )’(tk—l)+]lki1Yjij(tk—l7 )’(fk—l))“lk“YkW(ﬂ, Y(Tl)), (4.4)

where N € [to, £y ] From the assumption we have y(rk _l)e Y, _;, andfromthe Lemma 1

it follows that
k-1 k—1 .

h Z Yjvjf(tk—l’y(tk—l))Eh Z YjVjF(Tk—[!Yk—l)'
j=0 j=0
Applying Taylor's formula we have
)’(TI)=Y(fk—1)+(ﬂ—fk—1)Y’(1k—1+ﬂ(‘ﬂ"k—1)), (4.5)
where & €0, 1]. Because ne[to,tk] and t; =ih for i =0,1,..., m, we get

Nty _y €[=(k —Dh, k1. (4.6)

Moreover, y'(t)= f (t, y(t)). Since
fl:tk—l‘*'ﬂ(n_tk—l):)'(tk—l+ﬂ(n_[k—l)):|EF(AlaAy),

then
y’(tk_, +1f}(n~tk_1))eF(A,,Ay).

Taking into account the above considerations, from the formula (4.5) we get

y(M)€ Yy +[=(k =Dh, hIF (A, A 4.7)
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As we assumed, W is an interval extension of . Thus, applying (4.6) and (4.7), we have

By w(n ()
ehttly, (Tk_l+[—(k—1)h,h],yk~1+[—(k—1)/1,/1]F(A,,A).)).

Thus, we have shown that y(z) belongs to the interval

k—1

=0

lexy( =, B, Y+ (k= DR, BIF (8, A_‘,)).

but - according to the formula (3.7) - this is the interval Y,. This conclusion ends the proof for
n = k. In a similar way we can show the thesis of this theorem for n =k +1, k + 2,..., m

5. WIDTHS OF INTERVAL SOLUTIONS

Theorem2. Iftheintervals ¥, for n = 0,1,..., k -1 areknown, t; =ihe€T;, i =0,1,..., m,

n

h=%/m, and Y, for n=k, k +1,..., m are obtained from (3.7), then

k
2R L C AR TS P A

where the constants 4, B and C are independent of A.

Proof. From (3.8) we get

a(v)<d(tyy)+h éllﬁkj ]d(F(T,,_j,Y”_j))

By d(\y( k=1 R Y, +[=(k = 1)h, h]F(A,, A_y)))

(5.2)

We have assumed that W is monotonic with respect to inclusion. Moreover, if the step size 4
is such that satisfies the conditions

Ty +[=(k=Dh,h]C A,
Y, | +[-(k —l)h,h]F(A,,A),)CA

Vo

then
LP(T,, =k =Dh, )Y, | +[~(k =), h]F(A,, A, )) c¥(a,, Ay) 63

From (5.3) we have

d(‘P(T,,_l +[=(k =D, b1, ¥, _y +[=(k =Dk, hIF(8,, Ay)))s d(‘P(A,, A),)). (5.4)
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We have also assumed that for the function F there exists aconstant L > 0 such that

d(F(T,;_j, Y,,_j))s L(d(T”_j_)Jr d(Y,,_j)).

Therefore, from the inequality (5.2) we get
d(r,)<d(v, )+ LB, ﬁ‘, (d(T"_j)+d(Y”_j))+hk+lka(1P(A“Ay)), (5.)
j=1

where

, = max I '|.
g i=12, ...k Py

Denoting
P=hLBy, a=1+B, y=h‘"ly,, (55)

we can write (5.4) in the form

i(r,)<o ﬁ‘,ld(yu_ ;)+B ild(T"_ P (8 a,)) (5.6)
i= i=
From (5.6) for n =k we have
d(Yk)Socild(Yk_j)+Bﬁ:ld(Tk__j)+yd(‘P(A,,Ay)). 57)
i= i=

and for n =k +1 we get

d(Ve 1)< ocd(Yk)+ock.z:‘lld(Yk_j)+B i d(Tk+1;j)+yd(\1f(A,,Ay)).

7= J=

Applying (5.7) to the above inequality we obtain

(z(yHl)s(az +oc)‘k=1d(Yk_j)

J
(5.8)

+B ui d(Te_ )+ i d(TkH_j)]+y(a+l)d(‘I‘(A,,Ay)).
j=1 j=1
From (5.6) for n =k +2 we get 7
k-2 k

AV 2 )<0d (¥ yy ) +od (v, )+ Ocjgld()’k_j)+Bj§1d(Tk+2_j)+y(l(‘I’(A,, A),)).
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Insertion of (5.7) and (5.8) into this inequality yields

d(Yk+2)s(a3 +202 +oc)§) ar ;)
j=1

+ﬁ((a2 +oc)§: d(Tk_j)+(xﬁ=:ld(Tk+l_j)+

=1
ey +2a+1)a(¥(8,.4,))

Now, from (5.6) for n = k + 3 we get
k-3

d(Yk+3)SOLd<Yk+2)+ocd(Yk+l)+ocd(Yk)+a Y (v )
j=1

+B i d(Tk+3_j)+yd(\P(A,,Ay)).
j=1

Applying (5.7), (5.8) and (5.9) to the above formula we have
k
d(Yk+3)S(0L4 130 +30 +a) Y d(v— ;)
j=1
3 2 d 2 d
+B (oc +200° +oc)2 d(Tk_j)+(oc' +oa>2 d(THl_j)
j=1 j=1

+aj§::td(Tk+2 j) é (Tk+3 ;)]
(8:.8,)

+y(oc3 +30 +3a+1) (

Thus, for each i =1,2,..., m - kK we have

o) (20 J(._ b ,>}
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Applying the notation (5.5) we obtain

d(Yk+,)Sk 2 ( )(1{11Lﬁk)’+‘ max k_ld(Yq)

=0 g=0,1,...,

i

+hLBkL2 ( )(1+hLBk)’“_ max d(Tj)

p=00=0 =01 k+i=1

o, 3 (ovusfafo(e,s,)

=0

Let us notice that

k) forl=0,1,...,p -1,

(;) —k)! forl=0,1,...,i,
p—1
(')

(1+hLBk) <exp(§LBk)
p—1

1+1_ exp(ELBy)-1
l§0(1+hLBk) SW'

On the basis of the above we can make the following estimates
k 2 ( J(l+hLBk )I+J <m(m -k +1)!exp(§LBk),

=0
exp(&LBk)—l
hLBy
exp(&LBk)—l
BB

i

) z(pl_lj(lHLBL) <mm—k+1)!

p=01=0
» @(thk)’ <(m—k+1)!

=0

Thus, from (5.10) we finally get

d(Y, .. )<A  max  d(¥.)+B  max  d(T.)+Ch*
(k+') g=0,1,....,k—1 (q) j=0,1,...,m—1 (j)

foreach i =0,1,..., m - k, where
A=m(m—k +1)!exp(§LBk ), B=m(m-k +1)!(exp(§LBk)—1),

Yffk (n=k+ 1) exp(ELBy ) ~1)d (¥(A,, 4, ))

55

(5.10)

(5.11)
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Since Tp =[0,0], i.e. d(To)=0, theinequality (5.1) follows immediately from (5.11).

6. REMARKS

The main reason of this paper is directing one attention to the explicit interval multistep me-

thods of Adams-Bashforth type developed earlier by Sokin [2], The implicit multistep methods
(of Adams-Moulton type) were presented and carefully analyzed in our previous paper [1]. While
building a computational system that would apply both Adams-Bashforth and Adams-Moulton
methods some problems with Adams-Bashforth methods appeared. All necessary modifications
that had to be made are described in this paper.

At the moment one of our main tasks is to construct multistep predictor-corrector methods and

finish an appropriate computer system which would provide interval solutions of all known and
constructed multistep methods.
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