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A b s t r a c t . In our prev ious paper [1] we h a v e considered implicit interval multistep methods of A d a m s -
Moulton type for s o l v i n g the initial v a l u e problem. On the bas i s of these methods and the expl ici t ones in-
troduced by Sokin [2] we wanted to construct predictor-corrector (explicit-implicit) interval methods. How-
ever, it turned out that the formulas g i v e n by Šokin are incorrect even in the s implest case. Therefore, in this 
paper we direct our attention to the expl ici t interval methods of A d a m s - B a s h f o r t h type and m o d i f y the for-
mulas of Šokin. For the m o d i f i e d expl ic i t interval methods it is proved, l ike f o r the implicit interval methods 
cons idered in [1], that the exact solution of the problem belongs to interval-solutions obtained by these 
methods. Moreover, it is s h o w n an estimation of the widths of such interval-solutions. 

1. INTRODUCTION

Explicit interval methods for solving the initial value problem have been considered and 
analyzed in a number of papers and monographs (see e.g. [2] - [11]). Such methods are inte-
resting due to interval-solutions obtained which contain their errors. Computer implementation 
of the interval methods in floating-point interval arithmetic together with the representation of 
initial data in the form of machine intervals, i.e. by intervals which ends are equal or neighboring 
machine numbers, let us achieve interval-solutions which contain all possible numerical errors. 

In this paper we direct our attention to the explicit interval methods of Adams-Bashforth type. 
Such methods have been considered by Šokin [2], Unfortunately, it can be shown that the for-
mulas given by Šokin fail even in the simplest case, i.e. when the number of steps equals 1 (see 
Sec. 3). For this reason we modified Šokin's formula and showed that methods that we obtained 
produce the interval-solution that includes the exact solution of the initial value problem. 

This paper consists of six sections. In Sec. 2 we define the initial value problem and shortly 
present the conventional explicit Adams-Bashforth methods. Our modified interval formulas of 
their conventional equivalents are introduced in Sec. 3. In this section we also show an example 
of the initial value problem which interval-solution is incorrect when we apply the formulas pro-
posed by Šokin. It is shown that our modified formulas give a correct interval-solution. In Sec. 4 
we prove that the exact solution of the initial value problem belongs to interval-solutions obtained 
by the interval methods of Adams-Bashforth type. In Sec. 5 we estimate the widths of interval-
solutions obtained by the considered interval methods. At the end of our paper we draw some re-
marks (Sec. 6). 
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2 . T H E I N I T I A L V A L U E P R O B L E M 

A N D C O N V E N T I O N A L A D A M S - B A S H F O R T H METHODS 

As we know the initial value problem is concerned with finding the solution y = y(t) to a 

problem of the form 

(2.1) 

subject to an initial condition 

where and We will assume that the solution of 

(2.1) exists and is unique. 

Let us choose a positive integer m and select the mesh points i0, i1, ..., tm , where tn =nh 

for each n = 0 , 1 , . . . , m and h ξ/m. Assume that an integer k = 1, 2 , . . . will state how many 

approximations yn-k, yn-k+1,..., yn-1 of the exact solution at the previous k mesh points 

have to be known to determine the approximation yn at the point tn. 

(2.2) 

where 

(2.3) 

and 

After replacing the unknown values with y(tn - k), y(tn - k + 1), ..., y(tn - 1) approxi-

mations yn-k, yn-k+1 , ..., yn-1 obtained by applying another method (for example by a 

Runge-Kutta method, see e.g. [12]-[17]) and neglecting the errorterm h k+1 γkψ(η, y(η)) we 

are given the following formula known as the &-step implicit Adams-Bashforth method (see also 

e.g. [12] - [17]) 

(2.4) 

w h e r e f n - 1 = f ( t n - 1 , y n - 1 ) . 

As shown in [12] the exact solution of (2.1) considered on the interval 

form 

has the 
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3. EXPLICIT I N T E R V A L MULTISTEP METHODS 

OF ADAMS-BASHFORTH T Y P E 

Let us denote: 

Δt and Δy - sets in which the function f (t, y) is defined, i.e. 

F(T,Y) - an interval extension of f (t, y) (for a definition of interval extension see e.g. [2], 

[11] or [18]), 

Ψ(T, Y) - an interval extension of ψ(t, y). 

Let the assumptions about F(T,Y) and Ψ(T,Y) be the same as in [1] and [2], Moreover let 

us assume that for i = 1, 2,..., k -1 are and the intervals Yi such as 

known. We can obtain such Y i by applying interval one-step method, for example an interval 

method of Runge-Kutta type (see [19] or [20]). Then the explicit interval method of Adams-Bash-

forth type constructed by Šokin is given by the formula. 

(3.1) 

for n = k, k +1,..., m, where 

(3.2) 

Unfortunately, it can be shown that the formula (3.1) fails in the simplest case, i.e. when 

k = 1. For example, let us consider the initial value problem of the form 

(3.3) 

where The exact solution of this problem is given by 

y(t) = exp(0.5t ) . (3.4) 

Applying (3.1) for m = 2000, h = 0,0005 and Y0 = [0, 0], we get (in floating-point interval 

arithmetic) the interval-solution of the initial value problem (3.3) at t = 1 as follows 

Y ( l ) = [1.6487212621 1491595, 1.64872126211491651]. 
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where n = k, k +1,..., m. 

In particular for a given k we get the following methods: 

(3.7) 

Substituting (3.6) into (3.1) we obtain the correct formula for interval methods of Adams-Bash-

forth type of the following form: 

(3.6) 

As we checked, the formula (3.5) does not improve the interval-solution, and for this reason 

getting the correct result becomes impossible. Detailed study of conventional Adams-Bashforth 

methods led us to make some essential modifications. The correct error term should be written 

as follows 

(3.5) 

solution of the initial value problem (3.3). 

After careful consideration of the Šokin formula (3.1), we have found that the reason for such 

behavior of the method is defective error term of the form 

This simple example shows that and hence Y(1) is not the correct interval-

On the other hand the formula (3.4) yields the exact solution 
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This implies that 

Since 

the formula (3.7) can be written in the equivalent form 

(3.8) 

where 

Now, for comparison, let us apply modified formula (3.7) (or (3.8)) with k = 1 to the initial 

value problem (3.3). For m = 2000, h = 0,0005 and Y0 = [0, 0] we get the interval-solution 

at t = 1 as follows 

Y( l ) = [1.6487212621 1491595, 1.64872128787216209], 

and we have Thus, in this case we have obtained the correct interval-solution 

of the initial value problem (3.3) 

4. THE EXACT SOLUTION VS. INTERVAL SOLUTIONS 

For the method (3.7) we can prove that the exact solution of the initial value problem (2.1) 

belongs to the intervals obtained by this method. Before that it is convenient to present the 

following 

Lemma 1. If where Y i = Y ( t i ) , than 

for any j = 0 ,1 , . . . , k -1 we have 

(4.1) 

Proof. Since F(T,Y) is an interval extension of f(t,y), and 

i = n- k, n - k + 1 , . . . , n - 1 , we can write 

for 
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(4.3) 

(4.5) 

(4.6) 

then 

(4.7) 

(4.2) 

But 

From (2.3), (4.2) and (4.3) the inclusion (4.1) follows immediately. 

Theorem 1. If and for i = 1, 2, ...,k - 1 , then for the exact solution 

y ( t ) of the initial value problem (2.1) we have 

for n = k, k + 1 , . . . , m, where Yn = Y(tn) are obtained from the method (3.7). 

Proof. Let us consider the formula (2.2) for n = k. We get 

(4.4) 

where From the assumption we have and from the Lemma 1 

it follows that 

Applying Taylor's formula we have 

where Because and ti = ih for i = 0 ,1 , . . . , m, we get 

Moreover, y ' ( t )= f ( t , y ( t ) ) . Since 

Taking into account the above considerations, from the formula (4.5) we get 

51 
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As we assumed, Ψ is an interval extension of ψ. Thus, applying (4.6) and (4.7), we have 

Thus, we have shown that y(tk) belongs to the interval 

but - according to the formula (3.7) - this is the interval Yk. This conclusion ends the proof for 

n = k. In a similar way we can show the thesis of this theorem for n = k +1, k + 2,..., m. 

5. WIDTHS OF I N T E R V A L SOLUTIONS 

T h e o r e m 2. If the intervals Yn for n = 0 ,1 , . . . , k -1 are known, i = 0 , 1 , . . . , m, 

h = ξ / m, and Yn for n = k, k +1, . . . , m are obtained from (3.7), then 

(5.1) 

where the constants A, B and C are independent of h. 

Proof. From (3.8) we get 

(5.2) 

We have assumed that Ψ is monotonic with respect to inclusion. Moreover, if the step size h 

is such that satisfies the conditions 

then 

From (5.3) we have 

(5.3) 

(5.4) 
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(5.8) 

From (5.6) for n =k +2 we get 

Applying (5.7) to the above inequality we obtain 

and for n = k +1 we get 

(5-7) 

We have also assumed that for the function F there exists a constant L > 0 such that 

Therefore, from the inequality (5.2) we get 

(5.4) 

where 

Denoting 

(5.5) 

we can write (5.4) in the form 

(5.6) 

From (5.6) for n = k we have 
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(5.9) 

Thus, for each i = 1 , 2 , . . . , m - k we have 

Insertion of (5.7) and (5.8) into this inequality yields 

Now, from (5.6) for n = k + 3 we get 

Applying (5.7), (5.8) and (5.9) to the above formula we have 
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Applying the notation (5.5) we obtain 

Let us notice that 

(5.10) 

(5.11) 

for each i = 0 ,1 , . . . , m - k, where 

Thus, from (5.10) we finally get 

On the basis of the above we can make the following estimates 
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Since T0 = [ 0 , 0 ] , i.e. d ( T 0 ) = 0 , the inequality (5.1) follows immediately from (5.11). 

6. REMARKS 

The main reason of this paper is directing one attention to the explicit interval multistep me-

thods of Adams-Bashforth type developed earlier by Šokin [2], The implicit multistep methods 

(of Adams-Moulton type) were presented and carefully analyzed in our previous paper [1]. While 

building a computational system that would apply both Adams-Bashforth and Adams-Moulton 

methods some problems with Adams-Bashforth methods appeared. All necessary modifications 

that had to be made are described in this paper. 

At the moment one of our main tasks is to construct multistep predictor-corrector methods and 

finish an appropriate computer system which would provide interval solutions of all known and 

constructed multistep methods. 
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