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A b s t r a c t : In this paper a concept of a formal system aimed at modelling biological processes in cell is 
introduced. The aim of this formulation is to provide a theoretical basis for numerical simulations of 
the biological processes taking into account accessibility to various levels of details and possible ful l 
complexity of phenomena associated with them. The main segment of this formal system is a method of 
multiscale modelling called here the collection of dynamical systems with dimensional reduction. This 
approach allows one to integrate various mathematical methods applied in cell biology. It is especially 
related to continuum mechanics and molecular dynamics. Such a formal mathematical approach is 
supplemented by a set of notions which characterizes specific properties of biological systems. They are: 
the molecular recognition, integrity property for a chain of chemical reactions and molecular reactive 
structures. Nanoscale models of molecules are suggested to be a central segment of the multiscale modelling 
and are designed to direct cooperation with molecular dynamics. They are aimed at describing 
multimolecular processes in cell. It is shown that the nanoscale level of description is convenient for 
model l ing molecular motors. Status of the present stage of formulation of the formal system is discussed 
taking into account further development directions. 

1. INTRODUCTION 

Complexity of biological systems leads to application of various mathematical methods in 
modelling of them. In particular we can distinguish two important theoretical directions 
considered in modelling of biological processes. The first one is based on continuum models [1], 
Then, more averaged properties of biological systems are usually described. The second one is 
connected with discrete methods related to atomic level of modelling represented by equations 
of molecular dynamics [2], Methods of molecular dynamics are supported by quantum mechanics. 
However, quantum mechanics is also applied independently in modelling in biology. Discussed 
theoretical directions lead to miscellaneous methods of numerical simulations applied in biology. 
Such approaches embody the fact that biological structures are connected with processes related 
to various scales. 

Considerations of this paper are concentrated around concepts of integration of the molecular 
dynamics and continuum mechanics. Consequently, we do not discuss problems related to 
quantum mechanical modelling of biological processes. 

We could pose a general question: what we would like to attain by numerical simulations in 
biology, neglecting at this moment current possibility of realization of them. An interesting aim 
is modelling and numerical simulations of the whole cell as a system of processes. Obstacles lying 
on way leading to realization of such an aim are serious. Molecular dynamics is able to simulate 
behaviour of single proteins [3], Biological processes in cell are usually multimolecular. Thus, 
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large number of atoms and complicated interactions, especially with solvent, makes difficult to 

use molecular dynamics directly to modelling processes. On the other hand continuum models 

describe processes in a very averaged way neglecting their real complexity [1], Finally, not all 

processes are well understood taking into account current state of molecular biology. However, 

despite of these difficulties, the question what kind of mathematical approach would be 

appropriate for modelling cell processes is discussable. 

In order to use mathematical methods for modelling biological systems in a systematic way 

we would like to have at our disposal a formal system. Let us note that a formal system was 

introduced for mechanics. Such a system is called the rational mechanics and has been developed 

for many years [4], As a result we have obtained considerable progress in systematization of 

mathematical methods applied especially in mechanics of continuum [4], This creates convenient 

theoretical basis for application of various numerical simulations in mechanics. 

Considerations related to a formal system aimed at modelling biological processes in cell need 

discussion of characteristic properties of them. It would be convenient to define precisely 

biological molecular structures. However, the most fundamental laws which govern their 

evolution are perhaps not entirely known. Therefore, we confine ourselves only to characte-

rization of such structures here, taking into account some aspects important for discussed in this 

paper stage of modelling. 

Biological structures have considerably differentiated properties manifested at various scales. 

They represent possibilities of bearing even strong loadings and, on the other hand, they represent 

very fine processes such as precise chemical reactions in water. The fine processes can be 

realized owing to stabilization of conditions by a part of this structure which is able to bear 

stresses. Such a structure is usually connected with a larger scale than the chemical reactions. 

Elementary mechanisms governing evolution of the biological structures are submolecular. 

However, characteristic processes are usually multimolecular which especially accentuate 

multiscale nature of them. 

Finally, all processes of biological systems are interacting. They are integrated within larger 

units which are open systems interchanging mass and energy with an environment. 

Mathematical methods in biology are developed for many years. In particular, biological 

cybernetics and works of Haken [5] accentuate important role of dynamical systems in 

mathematical modelling in biology. However, current state of these approaches is not connected 

with elaboration of formal system similar to that one considered in mechanics. Such a situation 

seems to be caused by lack of formalization of scale of averaging assumed in modelling of 

biological processes. 

Consequently, in the case of modelling biological systems we should be able to describe 

processes at various scales. This directly follows that formalization of scale is an important aspect 

of the discussed formal system. Furthermore, we see that integration of continuum mechanics as 

well as models representing atomic or even subatomic level should be carried out within 

the formal system. Such an uniform approach would be able to express more averaged properties 

of biological systems basing on smaller scale interpretation. 
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The long range aim of the constructed formal system is to create a theoretical basis for 

numerical simulations of cell processes viewed as an integrated system. Then, the question 

relating to range of validity of particular equations applied is of great importance. Indeed, in 

complex system of phenomena we have to do with changing external conditions influencing 

evolution of a subsystem considered. Then, in order to apply correctly equations describing its 

evolution we have to know range of validity of these equations. Determination of the range of 

validity of equations applied can be given by some critical conditions. Such a situation enables 

us to change the description during simulations in the case when the critical conditions are 

violated. Thereby, knowledge of range of validity of applied equations is a necessary condition 

for reliable numerical simulations of larger systems. Therefore, this aspect should be also 

expressed in formulation of our formal system. 

The aim of this paper is to introduce a concept of a formal system which takes into account 

multiscale properties of processes described, possibility of integration of various mathematical 

methods related to modelling biological molecular structures as well as specificity of biological 

processes in cell. 

In this paper we introduce the collection of dynamical systems with dimensional reduction as 

a theory which realizes requirements related to formalization of scale within mathematical 

methods of modelling. This is a multiscale description which contains continuum mechanics as 

a particular case and problem of scale of averaging is viewed there as the most important. This 

is a good candidate to be the main part of our formal system. However, such a mathematical 

framework needs additional system of notions which would be able to distinguish biological 

structures from many others, taking into account their specificity. 

Notions defined for characterization of biological structures are introduced here by definitions 

of the molecular recognition, integrity property for a chain of chemical reactions and molecular 

reactive structures. 

The molecular recognition enables us to consider necessary conditions for realization of 

precise synthesis which happens in biological systems. The integrity property for a chain of 

chemical reactions allows one to discuss integrity within a more complex system of chemical 

reactions. Molecular reactive structures are designed to model more stable with respect to 

chemical composition molecular structures which can cooperate with chemical reactions. 

In this paper particular role of the nanoscale description of single molecules is accentuated. 

We have discussed above a problem with modelling biological processes which have elementary 

mechanisms at submolecular level, however themselves are multimolecular. Discussed in this 

paper nanoscale models are just designed to modelling multimolecular processes owing to 

considerable reduction of degrees of freedom in comparison with molecular dynamics dynamical 

systems. 

Nanoscale models could also be viewed as a starting point for derivation of more averaged 

models by means of a dimensional reduction procedure. 
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2. COLLECTION OF D Y N A M I C A L SYSTEMS 

W I T H DIMENSIONAL REDUCTION 

2.1. Dimensional reduction procedure 

General aim of formulation of the collection of dynamical systems with dimensional reduction 

is to elaborate methods of dimensional reduction of an elementary dynamical system (EDS). 

The elementary dynamical system represents description of physical processes on an assumed 

elementary level and is characterized usually by considerable complexity. By means of 

the dimensional reduction we obtain a simplified model based on theoretical foundations provided 

by the EDS. 

Let φ be variables of EDS and f represents external interactions acting on such a system. 

Then, we introduce the elementary dynamical system in the form 

φ = L(φ,f). (1) 

Transition to a larger scale of averaging is connected with a simplification of this model, 

corresponding to reduction of degrees of freedom. Our concept of this simplification consists in 

division of the elementary dynamical system (1) into subsystems. Subsystems are distinguished 

into groups is introduced by means of set of indexes IAh which number components of φ which 

belong to the h-th group. In general, we admit the case when the set IAh can be varying during 

evolution of a given subsystem. 

Determination of subsystems allows one to introduce new variables. They represent a reduced 

number of degrees of freedom and describe approximately behaviour of each subsystem. New 

determined on a time interval T into processes determined on the reduced level of description 

External interactions acting on the dimensionally reduced dynamical system have to 

correspond to those ones introduced for the elementary dynamical system. Such a correspondence 

The dimensional reduction procedure DR = {ΠT, πfT, SDS, app} consists of four elements. 

Determination of new variables and external interactions with the help of πT and πfT is a first 

step in postulating a skeletal dynamical system SDS. The SDS(C) represents a set of dynamical 

systems with elements depending on constants C. Final form of the dimensionally reduced 

solutions of the elementary dynamical systems and solutions depending on C which are obtained 

viewed as fourth component of the dimensional reduction procedure. 

methods of approximation and identification applied for obtaining is denoted by app and is 

The set of all from equations of the skeletal dynamical systems. Then we obtain RDS = SDS 

dynamical system RDS is obtained by identification of the best constants by comparison of 

which transforms processes of external interactions. is introduced by a mapping 

variables are introduced by a mapping which transform processes 

the form where P is a number of subsystems. Selection of variables 

Then, our initial variable takes by determination of groups of variables 
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2.2. Balance of mass and energy for collection of dynamical systems 

In order to postulate a form of the skeletal dynamical system we have to introduce a set of 

assumptions which enable to transfer fundamental physical laws expressed by balance of mass 

and energy equations into the reduced level. They are transferred from the EDS level. 

Option of IG is arbitrary. Accordingly, we can express the balance of mass equation connected 

with an arbitrary group of subsystems represented by IG with the help of the formula 

Total sum of masses interchanged between subsystems, within the distinguished group by IG, 

without any interchange with an external subsystems is equal to zero. Consequently, we obtain 

then 

(2) 

determines subsystems which are external with respect to our group. 

By means of above introduced assumptions we are able to carry out analysis of interchange 

of mass between subsystems as well as to consider possible sources of mass which appear within 

subsystems. This leads to expressing the balance of mass equation for collection of dynamical 

systems in the following form 

be a set of indexes which distinguishes a group of subsystem. Then, IQ = IP - IG Let 

a source of energy in the i-th subsystem. 

can be considered for each subsystem of the whole system and stands for 

6. A source of energy is determined by a function R : 

can be considered for each subsystem of the whole system and stands for a source of mass in 

the i-th subsystem. 

Let stand for space of solutions of the elementary dynamical system with 

distinguished groups of variables φh related to h-th subsystem. We introduce the following set 

of assumptions: 

1. There exists a function which assigns a set of masses for the h-th 

subsystem. The total mass of this subsystem is then We have also that 

where N is the total number of masses in the whole system. The function with 

property determines distribution of masses in subsystems and m : 

determines the total mass related to (1). 

2. There exists a function which determines distribution of 

energy assigned to subsystems and E : determines the total energy 

related to (1). 

3. There exists a family of mappings called flux of mass 

from j-th subsystem to i-th subsystem and Jij + Jji = 0, Jii = 0. 

4. There exists a family of mappings Wij : called flux of 

energy from j-th subsystem to i-th subsystem and Wij + Wji = 0, Wii = 0. 

5. A source of mass is determined by a function c : 
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(5) 

stands for family of all subsets of the Euclidean space Ee. The map Gx assigns some distinguished 

points to subsystems, GL introduces one-dimensional, Gstwo-dimensional, GVthree-dimensional 

geometrical objects considered as subsets of Ee and accompanied by distinguished subsystems. 

Introduced assumption enables discussion of geometrical objects associated with EDS. In 

particular, we can discuss position vectors related to EDS by means of mappings Gx. This gives 

Geometrical objects of various dimensions can be assigned to each subsystem by means of 

mappings Gx : : where 2Ee 

Let us note that Ei and Wij depend, in general, on state of the whole system in accordance with 

assumptions 2 and 4. 

Balance of mass and energy equations given by (3)-(6) are a starting point for postulating 

the skeletal dynamical system. This is realized by option of new variables and representations, of 

functions which appear in (3)-(6). These functions are parameterized then by a set of constants 

which should be next identified. 

2.3. Continuum skeletal dynamical system 

Wide application of continuum mechanics in biology necessitates discussion of way of 

appearing of this theory within the collection of dynamical systems. Foundations of continuum 

mechanics has been discussed by many authors, see for instance [6, 4], 

We would like to introduce fundamental notions of continuum mechanics in connection with 

the elementary dynamical system. Continuum is defined by means of geometrical terms. 

Therefore we introduce an additional assumption related to properties of subsystems distin-

guished within EDS as follows: 

where represents an assumed form of efflux of energy. 

(6) 

with additional conditions 

The balance of energy equation has similar structure as the balance of mass equation and is 

given by 

where is given and expresses an assumed form of efflux of mass. 

(4) 

As a result the equation (3) is not entirely determined. This, in turn, necessitates introducing an 

additional condition 

The terms describe interchange of mass with an external system indexed by elements of IO. 

(3) 
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a possibility of considering kinematics and other elementary notions of continuum mechanics in 

relation to the elementary dynamical system. 

For defining a body we consider the mapping Gv({φh}) = { K h } , where Kh is a three-

-dimensional subset of Ee. Let and stand for all families of Kh ob-

tained by means of Gv. Then, Gv : We assume also that int 

where int is operation of taking interior of a set. 

Definition 1: 

the help of mapping 

Deformation is connected with evolution of points with respect to reference configuration. 

In order to describe deformation we consider the function Gx which assigns a distinguished 

point χh to each subsystem. Consequently, we have that We interpret { χ h } as 

distinguished positions associated with subsystems. 

Let and Vah be a linear space. The set Ih

a represents indexes of sub-

systems Km which interact with Kh. Then, we introduce the function ah: and 

as a function of kinematical dependence between sub-

systems. By this function the gradient of deformation and strain tensor can be introduced. 

The space characterizes deformation determined by a finite number 

of parameters. Let us define the space VҠ of deformation functions χҠ of the body with respect 

to a given configuration κ as in accordance with classical 

formulation of continuum mechanics [41. Let furthermore, be a function and 

where Xh is value of χh in a reference configuration. 

Definition 2: 

The deformation function associated with the distinguished family of subbodies is 

a function which has the form 

Definition 3: 

The motion of the body associated with the family of sets is a continuous map 

Let us consider a function which represents temperature. Let 

furthermore and Then, we introduce function bh by analogy to ah as 

Determination of the value Th is not so direct as defining χh. In the last case we use 

geometrical interpretation. We cannot do this in the case of temperature. Discussed problem is 

connected with precise definition of the mapping πT considered as component of the dimensional 

reduction procedure. Such a definition allows one to distinguish the part of evolution of 

the system which is responsible for definition of temperature. 

The body associated with the elementary dynamical system is defined with 
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Let Let us consider a function 

Definition 4: 

The temperature field associated with the distinguished family of subbodies is the field 

obtained with the help of the function αT as 

We have obtained definition of the body, deformation function and motion of the body using 

an elementary dynamical system. The mappings Gv, Gx determine connections between EDS 

and continuum description. Furthermore, temperature is connected with EDS by means of 

the mapping πT. 

The spaces and are finite dimensional. As a result we have obtained also finite-

This follows that finite-dimensional fields are con-and -dimensional spaces 

sidered on continuum only. 

In order to introduce a continuum skeletal dynamical system we must have at our disposal 

balance of mass and energy equations also associated with the elementary dynamical system. 

Previously we have defined functions which introduce masses, eff lux 

of mass between subsystems, source of mass, energy, eff lux of energy and source of energy 

related to subsystems respectively. These functions, indexed here by φ, are introduced in 

connection with the elementary dynamical system. 

Let us consider the mapping which determines a set of masses related to 

collection of dynamical systems. Let and M : be a mapping which 

assigns masses to each Kh. Masses Mh related to continuum model are defined by means of 

the relation where i is identity mapping. Thereby, a system of masses related to 

continuum is introduced by means of the mapping defined on elementary dynamical system. 

associated with the elementary dynamical system. We define sub-

body also denoted by where is an arbitrary subset of IP. Let us introduce 

Thereby, mass related to subbodies is defined as a kind of measure on 

the body. 

The function determines distribution of energy on the family { K h } and 

assigned to each Kh is defined by means of the relation 

Source of mass and source of energy are defined now as 

by means of relations and These 

quantities can be defined for subbodies with the help of formulas 

We assume without discussion of details that is considered as a sum of internal 

energy and kinetic energy for continuum. 

Interchange of mass and energy is described by efflux of mass, and eff lux of 

energy These quantities are defined for continuum as where 

We have defined body 
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J i j is determined by means of where we obtain 

W i j from 

Let us consider furthermore boundary of the body as We define 

and as quantities referred to boundary of 

the body. Let be defined as We assume that pair of 

indexes {i, m} is associated with is a border between subsystems i and m. Then, 

Using terms of continuum associated with the elementary dynamical system introduced above 

we can express balance of mass equation for continuum which corresponds to (3) as 

(7) 

with the additional condition as a counterpart of (4) and satisfied for arbitrary 

(8) 

(9) 

for a given 

The balance of energy equation corresponding to (5) and now expressed in terms of 

continuum is assumed in the following form 

with the additional condition corresponding to (6) and satisfied for arbitrary subboundary 

of the body 

(10) 

for a given 

Introduced here equations of balance of mass and energy are the first stage for postulation 

the skeletal dynamical system. In the next step we assume representations of quantities introduced 

in (7-10). They are parameterized by some constants which have to be identified. Identification 

of these constants is realized with the help of solutions of the elementary dynamical system. 

Continuum fields on the body are introduced by means of previously determined discrete 

fields with the help of mappings similar to αχ and αT for deformation and temperature. They 

should fulfill well known integral relations between densities and discrete values of quantities on 

each subbody. Consequently, discussed here continuum mechanics is characterized by finite-

-dimensional spaces of fields. In classical case such spaces are infinite-dimensional. This 

difference is important. Derived equations are finite-dimensional and we do not apply 

discretization methods. In discussed case a continuum model with finite-dimensional fields is 

inherently connected with determination of degree of averaging what is expressed by option of 

sets Kh and the skeletal dynamical system. As a result we introduce by this, formalization of scale 

of averaging. Such a fact is important for description of processes associated with phenomena 

relating to several scales. Thereby this is also important for biological systems. 
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Let us assume that the elementary dynamical system is determined by equations of molecular 

dynamics. Then, integration of the molecular dynamics with continuum mechanics consists in fact 

that we use continuum skeletal dynamical system in the framework of the dimensional reduction 

procedure. 

Let us note that connections of molecular dynamics and continuum mechanics are discussed 

in literature. Such considerations are carried out usually in the context of statistical mechanical 

calculations supported by molecular dynamics [7, 8], Considerable achievement for cooperation 

of both theories is given by Prrinello and Rahman in [9]. 

2.4. Final comments 

We have introduced collection of dynamical systems with dimensional reduction as a multi-

scale method of modelling. Final aim of this approach is to provide the reduced dynamical system 

which describes our object in an averaged way. 

In order to realize the dimensional reduction procedure we have to divide EDS into 

subsystems, determine mappings πT, π
fT

 and postulate form of SDS. Let us notice that SDS can 

be arbitrary in fact. Indeed, we can identify constants of RDS by means of some general 

procedures. An example of such a procedure is discussed in (44). However, then the main 

question is related to quality of approximation. In order to improve the quality of approximation 

we should introduce into form of SDS additional information. 

We discuss in Subsection 2.2 balance of mass and energy equations for collection of 

dynamical systems. Let us notice that such equations are not necessary in general. We discuss 

them just in order to provide additional information into form of SDS. When the structure of SDS 

is in accordance with the balance of mass and energy equations then we can expect that such laws 

are well approximated by the reduced dynamical system. 

We can consider two extreme points of view on methods of postulating of SDS. The first one 

is related to situation when we postulate SDS arbitrarily, neglecting accessible information from 

EDS. In such a case we can expect that approximation is not perfect. The second one corresponds 

to situation when we derive form of SDS formally from equations of EDS. This way can be 

complicated for complex systems. Therefore, in practice, we expect an intermediate situation. We 

postulate SDS by means of some additional information obtained from EDS, perhaps by partial 

derivation of some results. Just such a situation takes place when we derive general form of 

balance of mass and energy equations for collection of dynamical systems. 

In particular, we can also derive balance of mass and energy equations assuming that SDS 

represents continuum skeletal dynamical system. Then, we introduce additional information 

connected with structure of continuum. We can consider the temperature field for instance. It 

means that we describe evolution of our object with considerable degree of averaging. When we 

discuss an averaged model of single molecule we usually do not use continuum description. Then, 

we introduce variables which describe dynamics of small scale in less averaged way. 
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3. DEFINITIONS OF THE MOLECULAR RECOGNITION 

AND INTEGRITY PROPERTY 

Discussed above collection of dynamical systems with dimensional reduction provides 

a mathematical framework for unification of various theoretical methods within one multiscale 

description. Such a mathematical formalism should be supplemented by a set of notions which 

correspond to characteristic properties of biological structures. In this section we define necessaiy 

conditions corresponding to precise realization of a selected chemical reaction as well as for 

integrity of a system of chemically reacting molecules. 

We define first the molecular recognition. The molecular recognition is widely applied within 

supramolecular chemistry [10] by scientists which realize in practice synthesis of large molecules. 

Following the papers of Lehn [10] we find that "molecular recognition has been defined as 

a process involving both binding and selection of substrate(s) by a given receptor molecule, as 

well as possibly a specific function". 

A mathematical definition of the molecular recognition has been introduced in [11]. This 

notion is viewed to be important for characterization of biological structures. Therefore, we 

introduce here this definition. 

Let us consider two molecules a and b and the reaction a + b ab denoted by Let 

be configuration space for the discussed molecular system and V : be 

the potential energy. Then, and m. are velocity and mass of z'-th particle. Realization of 

the reaction can be expressed by evolution of configuration of the whole system. Final state of 

this system is described by evolution in a catchment region CR corresponding to the reaction 

Catchment regions for the potential energy are defined in [14, 15] as equivalence classes for 

points belonging to which have steepest descent paths with ends at the same minimum. 

We introduce the following equations describing evolution of our molecular system in 

solution [12] 

(11) 

where ci are friction constants, ci vi represent friction forces induced by solvent, FSi are stochastic 

forces following from solvent-molecule interactions and fi are external forces acting on 

the system. 

We consider equations (11) as the starting point for introduction of definition of the molecular 

recognition. 

a stochastic process, then D(t) is also a realization of a stochastic process. 

Let represent variables of our equations, where stands for corresponding 

phase space. We introduce as projection of the phase space into the configurational 

space. Let be a solution of our equations with an initial condition which 

represents initial state of molecules a and b. Since forces are considered to be 
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Definition 5 

We say that two molecules a and b undergo the molecular recognition with respect to 

the reaction with probability p, if they find themselves in a state is 

a maximal set called the range of selection, which satisfies the condition that there exists tk such 

that for each and is a probability 

measure related to this problem. 

Introduced above definition fulfills expectations related to the Lehn formulation. If 

the molecules a and b are in state then they have to react in order to find themselves in 

the final binding state in case of p = 1. Form of the set Us represents information contained in 

the system which characterizes conditions leading to realization of this reaction. Thereby, the set 

U s is responsible for selection of substrates. 

This definition suggests that process of bonding of two atoms is also associated with 

molecular recognition. Indeed, this is the case. However, the range of selection is then rather 

simple and not too interesting. In the case of molecular reactions determination of the range of 

selection set seems to be very difficult in general. In particular, it depends on model of solvent 

applied in calculations. Summarizing, the definition of the molecular recognition indicates that 

knowledge of range of selection set is a necessary condition for realization of precise reactions 

in molecular systems and, in particular, in biological molecular systems. Therefore, a con-

sequence of this definition is a necessity of development the part of chemical reaction dynamics 

which is directed especially towards determination of the range of selection. 

We observe that chemical reactions in living organisms are highly organized and create an 

integrated system. The definition of the molecular recognition allows one to formulate integrity 

property for a chain of chemical reactions. 

We define a chain of chemical reactions { C R α } by means of the formula 

(12) 

Thus, the characteristic property of the chain of reactions consists in fact that the product aα+l 

of the reaction CRα is a substrate for the next reaction CRα+x. The substrate bα+x is taken from 

an environment. 

Values of positions and velocities of nuclei of atoms belonging to molecules aα and bα at 

the time instant t are denoted by {R , v ) { { a α , bα})(t). Let Uα stand for range of selection for 

the reaction CRα. Let us consider a time interval Δα = [ t p α , tkα] connected with a stage of 

realization of the chain of reactions. We assume that an instant for inception of the reaction CRα 

belongs to Δα. 

Definition 6 

We say that the chain of the chemical reactions has the integrity property if 

for some for each 
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The range of selection is of fundamental importance for this definition. Each step of 

realization of the chain of reactions has to be preluded by molecular recognition. This has to be 

interpreted as a necessary condition for precise realization of this system of chemical reactions. 

Summarizing, the mathematical definition of the molecular recognition enables us to discuss 

problem of integrity of larger system of chemical reactions. This property also distinguishes 

biological systems from other ones. 

4. DEFINITION OF THE MOLECULAR R E A C T I V E STRUCTURE 

Considerable part of molecules in cell does not change their chemical composition. However, 

such molecules can undergo structural transformations and take part in chemical reactions. Thus, 

they are similar to catalysts. However, category of catalysts is functionally directed to controlling 

chemical reactions. We would like to define molecular reactive structures as all stable with 

respect to composition molecules which can take part in chemical reactions but their function can 

be various. In particular they can be enzymes or they can create larger, solids like structures. 

We formulate definition of the molecular reactive structure considering molecule as a set of 

material points corresponding to nuclei of atoms. We introduce notation S(R) for a system of 

the material points representing molecule and R for its current configuration. We introduce 

The configuration RRS can undergo transition between catchment regions during evolution. We 

admit, in general, transitions for the molecular reactive structure which do not destroy an ad-

missible structure of interatomic bonds. 

Let stand for positions of material points within the reactive structure SRS. 

Let us introduce a relation which consists of pairs of nuclei which are joined 

by interatomic bond b (Ri, R j). Existence of such bonds can be determined by means of methods 

of quantum chemistry [13]. 

Let be a set of all relations which represents an admissible structure of interatomic 

bonds within SRS. The term "admissible" corresponds to current requirements related to described 

structure. Thus, we can accept the case when the set consists of one element only. Then, all 

interatomic bonds cannot be changed with respect to the relation classifying them. However, we 

can accept the situation when a reorganization of interatomic bonds structure, without unwanted 

changes, happens. 

With the help of the set we introduce a relation between relations. Thus, when 

Domain of the potential energy can be divided into catchment regions Ca connected with 

minima cα of V as [14, 15]. If the molecule SRS interacts with other particles during 

a chemical reaction then the configuration space is extended. As a result the potential energy 

V= V(RRS, RE) depends on additional variables RE representing a system of external molecules 

SE. Decomposition of into catchment regions depends now on RE and we have Cα = Cα(RE). 

notation from the set theory for systems like S. Thus, two subsystems create a new 

molecule represented by S. 
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regions. 

This definition expresses fact that the molecular reactive structure takes part in a chemical 

reaction but interatomic bonds can undergo evolution without destroying their admissible 

structure only. Thereby, deformation and structural transformations of the molecule SRS are 

admissible. 

5. CONCEPT OF MECHANICS OF REACTIVE NANOSTRUCTURES 

5.1. Skeletal dynamical system for reactive nanostructures 

We have introduced molecular reactive structures using atomic level of description. However, 

we can discuss reactive structures also by more averaged descriptions. 

Let us consider behaviour of actin cytoskeleton [16,1], This molecular structure undergoes 

considerable reorganization in order to realize motility of cell. In particular cytogel into cytosol 

transformation is realized by destruction of a meshwork of actin filaments. Assembly of 

contractile actin-myosin filaments is organized within cell for generation active stress. Such 

a medium can be described by means of continuum models [1] in a very averaged way. Then, 

the problem is to postulate form of constitutive equations taking into account high controllability 

of this medium. 

Elementary mechanisms of reorganization of the actin cytoskeleton are related to single 

molecules. Actin filaments are assembled from monomers [16], Protein molecules take part in 

regulation of these processes [1, 17,18] 

Above concise discussion suggests that considered here processes are related to single 

molecules or to a system of such molecules which can undergo a reorganization. Thus, evolution 

of this system depends on properties of single molecules as well as on processes responsible for 

the reorganization. Modelling of single molecules considering all atoms is too complicated for 

description of the multimolecular processes. Therefore, it seems to be the most appropriate to 

elaborate models of single molecules which describe evolution of groups of atoms within them 

satisfying discussed above conditions with respect to SRS and which ensures realization of this 

reaction process. 

Definition 7 

We call a molecule Sœ the molecular reactive structure if configurations RRS induced by all 

admissible processes 

initial and final instants tI and tF. Furthermore, then we also have 

which appear during evolution of the configuration RRS through various catchment 

for each pair 

between are contained within domain 

Let us assume that {RRS, RE}(t) represents process of a chemical reaction. At an initial instant 

tI the molecules SRS and SE are separated. At a final instant tFthey are also separated. This can 

final positions of this molecular system. We introduce a set of admissible processes 

be expressed by fact that in a neighbourhood of initial and 
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in an averaged way. Then, we have to use a nanoscale level of averaging properties of intra-

molecular processes. Furthermore, we should be able to describe mentioned above processes of 

reorganization as well as interactions with external chemical reactions. 

We come across in literature some models which consider reduced number of degrees of 

freedom for describing evolution of molecules. Let us mention for instance the paper [19]. 

We tend towards construction of a skeletal dynamical system for our reactive nanostructures. 

To this end we should distinguish first a set of new variables related to the reduced level of 

description. 

In many cases, during modelling, we are able to distinguish slowly and quickly varying 

processes realized within considered system. We assume that this is the case for evolution of our 

molecule modelled. Thus we consider thermal vibrations as quickly varying processes and 

structural transformation or a deformation of the molecule as the slowly varying one. Such 

division of processes we call SQ-decomposition. We introduce variables which reflect this 

property, by means of a set of mappings defined to this end. 

We consider, as previously, a molecule S(RRS) modelled by means of a set of material points. 

We distinguish subsystems within such molecule as composed of 

determined groups of atoms. 

Let us note that many small molecules appear in biological systems repeatedly, what gives 

a hope to obtain a degree of universality in division into subsystems. 

We introduce three kinds of variables on the dimensionally reduced level of description. 

The first one represents configurational variables Qh = { Q h p } and velocities which 

approximately describe evolution of the whole group of particles within h-th subsystem. They de-

scribe slowly varying processes. We introduce also the configuration space 

and the corresponding phase space 

The second kind of variables describes in an averaged way quickly varying processes and 

is related directly to balance of energy equation. The third group of variables ηh is related to 

quickly vaiying processes and needs postulating additional evolution equations. 

Let us introduce spaces of processes related to atomic level 

of description and 

and where r i s a time interval. 

New variables are obtained by means of the mappings and 

Structure of the mappings πST and πQT is obtained by using decomposition of variables. In 

order to illustrate this let us take a set of time instants t0 <t1<... <tK which belong to the time 

interval T= [t0, tK], tK = t0 + T, and let IK = {0, 1,..., K}. By means of these instants we divide 

the time interval into the sum T = UkTk, Tk [tk - 1 , tk], k=1,..., K. Then, for each k we can 

calculate the value of as 

(13) 
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A value is assigned to k = 0. With the aid of sequence of values we can 

generate a function where is an approximation procedure. Now, we are able 

to decompose the variable R(t) into two summands 

(14) 

Thus, represents the slowly varying part of R( t) and δR(t) its quickly varying part. 

We assume that the mapping satisfy the condition where 

means equality with an admissible error. In general methods of determining o f . are an open 

problem. 

Let (t) be mapping which realizes SQ-decomposition. We 

assume futher that there exists mapping πS and π
Q
 which give direct assignation of new reduced 

variables to those obtained by means of At. We would say that πS and π
Q
 takes into account also 

a space averaging imposed on previously obtained time averaging introduced by At. As a result 

we obtain 

(15) 

Similar SQ-decomposition can be carried out for forces f. To this end we calculate the following 

time averaged quantities 

(16) 

Then, we have with the help of an approximation procedure Finally, we obtain 

the decomposition 

(17) 

Let B,(f(t)) = and Thereby, we obtain 

the general form of the map πfT by 

(18) 

and 

In general it is expected that mappings πT and πfT are not entirely independent. We postulate 

that there exist relation which join considered two mappings. In discussed here case 

we assume that or in other words, the same procedures are represented by πT and πfT. 

Discussed above SQ-decomposition is similar to some degree to the Parinello Rahman method 

applied in molecular dynamics [9], 
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The set H represents deformations of the molecule S detennined on the dimensionally reduced 

level of description. H is viewed to be manifold since deformation of the molecule is considered 

as a continuous process. 

(24) 

the equivalence classes in the form 

given and be set of all manifolds in We introduce a set of representatives of 

Let stand for class of elements which are determined by using of all AR and T in (23) for 

motion of the molecule S on the dimensionally reduced level. 

represents rigid transformation of the configuration In other words we have defined rigid 

(23) 

for each component of Q belonging to the configuration space Then the transformation 

be mappings which realize the same rotation and translation Let AR: 

defined in (20) depends on configurational variables only. We also assume that 

for minimum of this function. 

stands 

Let us consider a given values of variables Then, the function 

for deformation function and temperature. We admit dependence CShγ, CQhδ on Qh, 

the sequel. 

are functions of kinematical dependence between subsystems related to Qh 

and correspondingly. They are defined in similar way as this is done in Subsection 2.3 

(21) 

(22) 

is decomposed into parts related to slowly and quickly varying processes. Furthermore, we 

assume that 

(20) 

(19) 

where is kinetic energy corresponding to slowly varying processes and 

In order to construct a skeletal dynamical system we have to postulate form of total energy 

of the system modelled. We assume that 

where and 

ηh in 
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(25) 

(26) 

(27) 

expressed by means of the Taylor expansion. Finally we obtain 

The domain of the function can be expressed as a fiber bundle [20] 

where xf stands for symbol of generalized Cartesian product of H and a chosen fiber FR(Q) 

identified with the equivalence class [Q], H is considered as basis of the fiber bundle. 

We assume that the function Φ has the following properties for each given values of 

for all Q, Q1 belonging to the same FR and this property is the case for all FR. In other words 

the function Φ does not change its value during a rigid motion. 

Let be an interval. The steepest descent path with the origin 

Q is defined as a path tangent to the vector Then, we assume also that p(Q, 0) = Q 

and at the end of each path we have a critical point c =p(Q, s*) and then 

Two points Q, Q1 are called equivalent if p(Q, s*) = p(Q l , s*). In other words equivalent 

points are origins of steepest descent paths having the same ends as a critical point. 

Definition 8: 

Equivalence classes of the relation defined by the steepest descent path are called catchment 

regions associated with the function 

As a result of defining the equivalence relation in we obtain decomposition of the domain 

of the function as follows 

where Cα are the catchment regions. 

The catchment regions depend on since the function is defined for given 

Thus, evolution of these variables can lead to qualitative changes of the catchment region division 

given in (27). 

The kinetic energy term depends on slowly varying variables only and inertia 

characteristics. Let us calculate . To this end we assume that the function has properties 
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(28) 

(29) 

(30) 

(31) 

49 

We use usual summation by means of the symbol Σ for indexes of subsystems and 

which are related to main division into subsystems. For the remaining indexes the sum-

mation convention is applied. 

Taking into account SQ-decomposition we modify the general balance of energy equation (5) 

into the form 

Thereby, sources of energy considered within subsystems and efflux of energy are decomposed 

into two parts. 

Owing to particular form of W S h m assumed, an additional condition for this quantity appears and 

will be discussed below. 

At this moment we admit again dependence of Cshμ, CQhv on previously considered variables. 

We assume that terms and We take into account these terms in 

the balance of energy equation. Consequently, next transformed version of (30) is given by 

We assume that C S h γ and CQhδ are constant at this stage of derivation. Furthermore we 

postulate particular forms of and Then, taking into account 

(19)-(22) and (28), the balance of energy (29) is now expressed by means of the formula 



50 J. Kaczmarek 

(33) 

(34) 

We introduce also the equation which expresses previously introduced notation in the form 

(35) 

The last term in (33) contains second time derivatives of Qkr with index k which can be found in 

IO. This induces necessity of considering furthermore the following additional condition 

(36) 

(32) 

where additional terms dependent on Qmq are taken into account. 

We would like to introduce friction terms as well as effects following from stochastic forces 

as a result of molecule - solvent interaction. Thus we assume existence, on the dimensionally 

reduced level, of additional forces Furthermore, the function Φ can be modified by 

averaging of effects of the stochastic forces. This is postulated by extension of the function Φ 

into the function ΦE = Φ + Φs in (20). Φs depends on Qhq only for this derivation. This function 

will be plotted with variables in the sequel, where ηs is an internal variable which takes 

into account solvent properties during evolution of the system. 

Let us assume that time processes are independent. Then we obtain the equations describing 

slowly varying processes 

with the additional condition 

for determining values of which do not belong to the system IG. 
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We obtain also from (32), using (33) and (34), the equation describing averaged evolution of 

quickly varying processes 

(37) 

with the additional condition 

(38) 

motivated by considerations related to (6). 

Since IG is not defined precisely, we assume that equations (37), (38) are valid for all IG and 

thereby for all parts of the molecule composed from distinguished subsystems. This necessitates 

in turn defining a family of conditions of type (38). 

Let Above introduced equations have an excessive number of 

variables. Therefore, additional constitutive equations must be introduced. They are assumed in 

the following form 

(39) 

(40) 

(41) 

(42) 

where ηS represents additional internal state variables which describe effects of interactions of 

the molecule with solvent. We introduce also the evolution equation for these internal state 

variables by 

(43) 

Equations (33)-(43) determine skeletal dynamical system for the reactive nanostructure. 

Identification of introduced constants should be realized by means of comparison of solutions of 

molecular dynamics equations andnSDS equations. The comparison of solutions can be carried 

out by means of a metric ρDR : determined in space of processes Then 

the function H defined by 



52 J. Kaczmarek 

(44) 

where d is a solution of SDS equations, should be weakly dependent on quantities φ0, f related 

to elementary dynamical system for obtaining a good approximation. C stands for a set of 

admissible constants C. 

A numerical example of realization of the dimensional reduction procedure for a chain of 

atoms, carried out in similar way as this is discussed above, has been discussed in [21], 

5.2. Chemical reactions with reactive nanostructures 

We distinguish two kinds of chemical reactions. The first one is related to reactions with 

particles which are not defined as reactive nanostructures. We would say that they influence 

behaviour of the nanostructure. As a result we are interested mainly in effects which they cause. 

Therefore, description of such reactions is suggested by terms responsible for external 

interactions. Consequently, we introduce the following additional equations 

(45) 

(46) 

(47) 

where ηRC represents internal state variables which describe process of approaching, bonding and 

releasing of the external particles. They influence evolution of the system directly by which 

can be viewed as a modifying factor related to Φ and also by interchange of energy expressed by 

The second kind of chemical reactions is related to joining of various reactive nanostructures 

as well as various forms of reorganization or fragmentation within a system of them. Then, we 

are interested in description of more detailed mechanisms governing such processes. Therefore, 

the notion of the molecular recognition should be transferred from atomic level of description into 

the nanoscale description. 

We consider the reaction denoted by as in Definition 5, and is cor-

responding catchment region defined on the reduced level of description. 

Let us consider a set stand for an initial condition for 

evolution of Let λ(t) = stand for a process related to evolution of the remaining 

variables which have an effect on form of Φ and thereby also on the corresponding catchment 

region Consequently, together with evolution of λ we consider also evolution of 
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We define the set . 

phenomenological, nanoscale models of assembling or reorganization of reactive nanostructures 

could be formulated neglecting detailed atomic processes. 

Let us notice that nanoscale models are perhaps very convenient in description of molecular 

processes using geometrical methods. Geometry of the potential energy hypersurface is 

intensively exploited for description of chemical reactions at the atomic level. The terms such as 

the steepest descent path and the catchment region are introduced just for the potential energy [14, 

15]. However, dynamics of atomic nuclei does not admit considering the steepest descent path 

strictly as a trajectory of a chemical reaction. Furthermore, jumps through energetic barriers are 

admissible owing to this dynamics. Such dynamics is not represented by steepest descent paths 

which tends directly to a minimum. 

Let us notice that this situation could be changed by some approximations related to 

the nanoscale model. First, discussed. SQ-decomposition averages thermal vibrations. Then, 

the energetic barriers which are jumped owing to thermal vibrations should vanish in description 

with the help of ΦE. This means that the geometrical steepest descent path defined for ΦE could 

be viewed also as a path of a dynamical process. Furthermore, we could admit approximation that 

frictional constants are relatively big in comparison with inertia characteristics. For larger 

molecules in solution such approximation seems to be admissible. Then, the equation of dynamics 

of the reactive nanostructure (33) could be approximated by 

as a set of all process λ(t) which do not change qualitatively 

the catchment region during evolution and for each t and λ(t) considered. 

This condition ensures that processes λ(t) do not disturb realization of the reaction 

We introduce below definition of molecular recognition which is associated with nanoscale 

level of modelling. This definition is not equivalent to the Definition 5. Difference rests on using 

now more averaged description. As a result we have lost some properties of molecules following 

from the averaging. Thereby, the molecular recognition defined here is not so precise as that one 

given in Definition 5. 

Definition 9: 

We say that two molecules a and b undergo the molecular recognition with respect to reaction 

with probability p, if they find themselves in a state is a maximal 

set satisfying the condition that there exists tk such that for each we have 

and is a probability measure related to 

this problem. The set is called the range of selection. 

The probability p and stochastic forces. applied in this definition express connections with 

solvent interactions. It also means that we admit a stochastic effects in equations describing 

evolution of the nanostructure. 

The range of selection enables to formulate conditions for realization of the reaction 

expressed in terms of the nanoscale model. 

Form of the set could be also considered as a phenomenological postulate. Then, 
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(48) 

Thereby, geometry of ΦE could be more important in this description than the potential energy 

hypersurface geometry in atomic description. Evidently, some complications have to appear as 

a result of evolution of the remaining variables In particular these variables affect 

the molecular recognition process. 

Description of processes by means of nanostructures is characterized by a reduced number 

of degrees of freedom in comparison with molecular dynamics. However, direct connection 

between these approaches is maintained here by the dimensional reduction procedure. Thus, if 

we have equations for evolution of the molecular nanostructure derived by means of the mole-

cular dynamics then we have also corresponding dimensional reduction procedure. This means 

that direct connection with molecular dynamics is expressed by mappings transforming variables, 

forces, form of the skeletal dynamical system and identification or approximation methods 

applied. As a result we obtain a complicated picture associated with derivation of discussed 

equations with the help of molecular dynamics. In such a case obtained equations can also be 

interpreted as a set of results of molecular dynamics calculations gathered in the dimensionally 

reduced equations. 

Some processes are associated with multifunctional molecules. Let us mention for instance 

the transcription factor TFIIH which takes part in general transcription process and also in 

nucleotide excision repair [22]. Consequently, we can imagine that some molecules can cooperate 

within various complexes of other molecules taking part in corresponding various processes. 

In order to describe such a situation probably changing dimensional reductions have to be 

applied in derivation of nanoscale models. This is so since we expect different external conditions 

acting on the molecule during evolution between mentioned stages. Consequently, we are 

interested in knowledge of range of validity of equations obtained by the dimensional reduction 

procedure. Furthermore, important properties of biological processes appear in the case of 

perturbation of them. Then, the perturbation could also cause exceeding admissible conditions 

for application of a given model. 

Above discussion suggests that change of equations applied, during simulations of various 

stages of processes is probably an inherent property of modelling more complex processes. 

Consequently, some critical conditions for validity of currently applied model should be defined. 

Let us assume that a critical condition for a given model connected with the dimensional 

reduction procedure DRα of α type takes the form 

(49) 

where is a determined critical value. 

If evolution of variables of the dynamical system associated with DRα leads to violation of 

the condition (49) then we have to realize change of model corresponding to the dimensional 

reduction DRα into that one which corresponds to D R α + 1 Application of the new equations 
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needs also determination of new initial conditions for variables associated with DRα+1. We 

assume these initial conditions in the form 

where dα+1, dα are variables of dynamical systems associated with DRa+1 and DRa corres-

pondingly. tf

α is a final instant of process described by means of DRα and t0

a+l = tf

α determines 

an initial instant associated with DRa+1. Γa, a+1 transforms the first type of variables into 

the second one. 

Consequently, satisfactory result of modelling by dimensional reduction procedure consists 

of equations of the reduced dynamical system based on EDS and range of validity of these 

equations, expressed by some critical conditions. Then, we are able to realize change of equations 

during numerical simulations of multimolecular processes. 

5.3. Molecular motors 

Molecular motors are objects intensively investigated in biology during last years. These 

molecular systems transform chemical energy into mechanical one enabling realization of various 

kinds of motion. Let us mention kinesin as a molecule transporting cell organelles along 

microtubule [23], RNA polymerase which takes part in transcription [24] or F1 molecular motor 

associated with synthesis of ATP [25] 

Mathematical modelling of molecular motors is also the subject of many papers, especially 

in physical literature [26-28]. 

The question is whether we are able to discriminate a category of molecular motors within 

molecular reactive nanostructures. Thus, the aim of this section is to show that the molecular 

motors can be described within the suggested kind of a formal system. 

It seems that nanoscale description is very convenient just for modelling molecular motors 

since thermal vibrations are averaged and then structural transformations of the molecule are of 

primary importance in this kind of modelling. 

We consider two molecular systems. The first one is the molecular motor SMT and the second 

one is a supporting molecule SSM on which the molecular motor moves. 

(50) 

Configuration of the whole system is given by Process of 

motion of the molecular motor is described by a path and especially by the sub-

path QMT

(s). Motion is associated with varying function which describes 

also effects of interactions with solvent in accordance with discussion from previous section. 

Changes of ΦM are induced by additional external reactions providing energy to the system 

Description of effects induced by these reactions is introduced by internal state 

variables ηRC in accordance with (45-47). 

Way of evolution of ΦM can be characterized by forms of the catchment regions. These forms 

are dependent on internal state variables ηRC responsible for evolution of external reactions. We 

introduce a parameter which characterizes a stage of the system in one cycle associated 
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We would like to describe properties of transition of the molecular motor from one catchment 

region to the other one as a result of supplying energy by external particles. We expect that 

the state of the molecular motor should be the same after each cycle discussed. Let us express this 

property. 

Then, in general. Then, also catchment regions can vary. 

molecule. However, when the molecule interacts, the function Φ depends on external parameters. 

The decomposition of depends on the form of the function Φ correspondi ng to the free 

transformed along the fiber FR into new manifold H' by means of μ. The catchment region CMT 

associated with this molecule is defined by properties of the potential energy considered on H 

since the rigid transformation does not change values of this function. Consequently, the map-

pings μ(AR, T) transform rigidly also the catchment region. 

format ion of H, μ(A R , T)(QH) = QH, QH, = AR(QH) + T(QH). It means that each 

composition of the configurational space 

is 

be rigid trans-

with fragmentation of some parts of subsystems, their structural transformations, and rebinding 

other parts of subsystems what finally enables realization of motion of the molecular motor. 

Let us discuss temporarily the case when the molecule SMT is free. Then, we have the de-

can distinguish subsystems responsible for some distinguished transformations associated 

this fact by the sequence of the catchment region transformations cal In particular, we 

We assume that a sequence of transformations of the catchment regions is realized during 

evolution of ηRC. The variable can represent effects following from reactions of binding ATP and 

various stages of hydrolysis realized in presence of the molecule SM, for instance. Then, energy 

is provided into the system SM and various structural transformations are realizable. We express 

catchment regions associated with external reactions is denoted by 

and also the previous configuration cα. Then, evolution of the configuration cα to cβ along the 

steepest descent path is realized. Such a situation can be interpreted as resulting from joining of 

some external, energy reach molecule to the system SM. This effect is described by ηRC. Attaining 

of the point cβ by configuration of the molecule induces further evolution of ηRC started at an 

instant tR and corresponding to transformation of the catchment region to the new form cβ with 

minimum the same or close to cβ, however without cα. Discussed above transformation of 

transformed into a new catchment region which contains, at this moment, a new minimum cβ 

We can discuss various forms of transformation of the catchment region. In case of elastic 

deformation of molecules induced by external interactions we assume that the catchment region 

is deformed without any qualitative changes. However, some processes are associated with two 

equilibrium positions and transformation between them. Let us discuss such a transformation. 

We assume that between time instants tα and tT the catchment region Cα with minimum cα is 

influences energetic state of the molecule and, as a result, also values of 

which influences direct transformation of ΦM as well as (77RC) which 

Evolution of ηRC leads to transformation of the catchment region by means of 

with energy supply connected with ηRC. The stage is determined by means of geometrical con-

siderations related to evolving structure of the system. 
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6. STATUS OF THE PRESENT STAGE OF F O R M U L A T I O N 

OF THE F O R M A L SYSTEM 

In this section we discuss status of the present stage of formulation of the formal system and 

possible ways which follow from it for further development of this approach. 

By the Definition 10 we have characterized a category of cyclic molecular motors by their 

physical state and form of evolution. Thereby, we see that description of this important molecular 

structure observed in molecular biology is realizable within our formal system. 

processes should be defined in similar way as in Definition 9. 

the molecular recognition. Then, corresponding range of selection and the set of admissible 

regions represent the same state for sI and sF. Structure of the supporting molecule SSM ensures 

that configurational variables QSM. for initial and final instant are able to attain appropriate 

values for fulfilling the property (51). 

Summarizing, we state that instants tI and tF indicate initial and final state of the molecular 

motor within one cycle. Projections of structure and state of the whole system on the molecular 

motor subsystem SMT is characterized by rigidly transformed set C M T 1 into C M t 2 . This means that 

absence of chemical reactions for tI and tF follows the same state and structure of the molecular 

motor neglecting a rigid motion. This also corresponds to readiness for repeating next cycle and 

continuing motion along SSM. 

Realizability of the processes of motion of the molecular motor is also associated with 

and furthermore Φ(μ(Q)) = Φ(Q) for all Variables determining the catchment 

(51) 

vely. We have also assumed that ηRC(sI)
 = η R C ( s F ) and therefore this variable is neglected in 

discussed below definition. 

Definition 10: 

Let SMT undergo evolution induced by a chemical reaction represented by a variables ηRC. 

We say that SMT is the cyclic molecular motor if its configuration transforms from the catchment 

region C1 into C2 during evolution in each cycle. Properties of transformations of C1 into C2 are 

associated with the sequence of transformations cal {T i}. Furthermore we assume that there exist 

AR and T for which the following condition is satisfied 

Let be the mapping which transforms the catchment region C1 corresponding to 

phase of reaction described by sI into the configuration subspace of the molecular motor 

Then, . Similar transformation changes the catchment region 

where tI and tF are time instants related to sI and sF respecti-
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Discussion of formal system, in general, can be carried out with respect to various aims. We 

can accentuate for instance formal mathematical aspects. Then, we make assumptions, introduce 

definitions and create various theorems together with their proofs. We would say that this is 

purely mathematical point of view. 

Another approach is connected with applications. Then, we would like to obtain a theory 

which satisfactorily describes behaviour of a discussed object. Then, we encounter again various 

situations. We can know entirely this object taking into account its structure and physical laws 

determining its behaviour. Then, the theory has, from the very beginning, clear physical 

foundations that leads to stable assumptions and enables realization of a clear way for mathe-

matical formalization. 

However, we can also consider objects such as biological cell with its processes which is not 

entirely recognized. Then, constructing of the formal system has to be realized by stages of 

development connected with advances in our understanding the object as well as with current 

increasing other possibilities such as, for instance, attainable power of numerical simulations. In 

such a case more important is well fitting of assumptions to described reality than, at this stage, 

discussion of far advanced mathematical consequences. This is so since we expect that status of 

assumptions is not entirely stable yet and they will undergo modifications. Such a situation 

corresponds just to the formal system constructed in this paper. 

A naturally arising method of following in constructing the formal system for describing 

evolution of biological structures seems to be an attempt to define the biological structures 

precisely. However, such a definition has to be immersed in a set of mathematical notions in order 

to be suitable for needs of our formal system. As a result, we should have clear picture what 

mathematical methods we can use in modelling. Furthermore, such methods have to be related 

to all physical aspects of biological systems in order to create precise definition. Such a situation 

corresponds rather to final stage of formulation of a formal system. Thereby, we have to do with 

a closed circle of problems. On the one hand we would like to give precise definition of a 

biological structure within a complex mathematical context. On the other hand we try to propose 

just what mathematical structure is suitable to this end. As a result, we cannot start with 

discussion of our formal system on the natural way considered. 

We should decide how to break this circle. Existence of such a feedback in doing steps 

towards mathematical formulation suggests that satisfactory formal system can be attained by 

realization of a sequence of steps. We have decided here to break the circle of problems by 

characterization of biological processes considering first properties important for modeling only. 

Thus, multiscale aspects and integrity of biological systems are discriminated as the most 

important to this end. Furthermore, we confine ourselves, at this stage, to considering a range of 

physical aspects which corresponds to descriptions placed between molecular dynamics and 

continuum mechanics. 

Functions of particular biological structures within a larger system of them, seem to be 

the most important for precise defining of the biological structures. Consequently, having in 

mind, in further stages of investigations, necessity of defining or classification of such structures 
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within the formal system, we try to localize the mathematical description around objects which, 

at first sight, are a determinant of biological processes. It is estimated that such objects are 

connected with property called here as "multimolecular processes". 

Such an approach suggests that we expect gradual development of defining and classification 

of biological structures, together with constructing parts of our formal system. Taking this into 

account we consider the mathematical approach which could be extended into models of new 

phenomena. Such a possibility is embodied in the dimensional reduction procedure considered 

within the collection of dynamical systems. 

We have introduced a set of definitions which create foundations of our mathematical 

description. Introduced definitions are formal and we should comment why, despite of their 

formal form, they have connections with modelling biological structures. 

We consider our biological structures as a physical system. Therefore, each definition is in 

fact related to methods of description of a physical process. Distinguishing application to biology 

consists in gathering of a set of physical processes which are present in biology and adapting 

methods of modelling to them. Suitable specification of such processes is the determinant which 

indicates that we are aimed at modelling just biological processes. 

Present stage of formulation of the formal system induces some investigation programs. 

Realization of them can be viewed as a preparation to the next stage of development of our formal 

system. 

Mathematical definition of the molecular recognition suggests development of modelling of 

reacting molecules in water on a way on which the range of selection set can be determined. Let 

us note that finding of state of molecules in the range of selection is a necessary condition for 

precise realization of the reaction. Thus, if we do not know such a set we are not able modelling 

precisely realized reactions. As a result modelling of biological processes needs development of 

the part of chemical reaction dynamics which describes approaching molecules taking especially 

into account propagation of interactions through water. Such a dynamics is related to distances 

between molecules, larger than usually considered in chemical reaction dynamics distances, 

corresponding to transition states. 

The second investigation program is related to development of methods of constructing 

the nanoscale models of molecules. Such models should be elaborated by means of molecular 

dynamics dynamical systems treated as elementary dynamical systems within the dimensional 

reduction procedure. Important aspect of this modelling is range of validity of derived equations 

which enable to change model in the case when the present one becomes not sufficient. As it was 

discussed previously, determination of the range of validity of equations is a necessary condition 

for using such models in complex, evolving conditions which happens in biological structures. 

Let us notice that nanoscale models can be viewed as a set of results of molecular dynamics 

simulations which are synthesized in the dimensionally reduced form. Thereby, above discussed 

concepts determine tasks for molecular dynamics which rely on obtaining a system of nanoscale 

models, by means of dimensional reduction procedure, applicable in simulation of molecular 

phenomena in an averaged way. 
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We can also consider nanoscale models based on phenomenological postulates. We observe 

in papers on molecular biology creation of concepts how investigated experimentally molecular 

system works. This is expressed usually by a scheme which describes sequentially stages of 

evolution of the discussed system. See for example protein elongation process realized in 

ribosome [29], Perhaps, using phenomenological nanoscale models we would be able to create 

an additional, supplementary region for speculation how such molecular structures act. An 

advantage from such an activity would be making more close experimental results and theoretical 

description. 

Above discussed directions of investigations could be summarized by several steps which 

could be done in order to start with modelling biological processes. 

1. Elaboration of methods of constructing nanoscale models for some small, prototype 

molecules. The methods would be based on dimensional reduction procedure applied to molecular 

dynamics EDS, describing behaviour of these molecules. 

2. Development of modelling interactions between molecules in water for the nanoscale 

description. 

3. Modelling chemical reactions using the nanoscale models. 

4. Elaboration of methods of determination of range of selection sets in order to describe 

integrity of chains of chemical reactions. 

5. Application of obtained in points 1-4 methods and knowledge to selected biological 

molecules. 

6. Modelling a selected multimolecular process in cell. 

Summarizing, points 1-6 describe a way of attaining the possibility of modelling biological 

processes by nanoscale models. We notice that in order to realize these points a considerable 

engagement is necessary. Therefore, we do not illustrate our formalism by an example of 

modelling of a particular biological process. 

Discussed above methods differ from those usually applied in modelling biological processes. 

We observe that, predominantly, during modelling, we try to introduce a simplification in order 

to obtain solvable equations in the possible simple form. The question is what for we have 

discussed above so complicated methods and why we introduce simplified, dimensionally reduced 

models if we have to use solutions of the elementary dynamical system. 

We use EDS for identification of dimensionally reduced equations. After this procedure, 

equations of RDS become independent on solutions of EDS and can be applied in arbitrary 

situations within their range of validity as some simplified models. We accentuate importance of 

range of validity of equations for numerical simulation of complex objects. This is justified by 

fact that changing of models during simulation of processes undergoing varying external 

conditions which happen in complex systems is inevitable. Consequently, methods of modelling 

discussed in this paper reflects aspiration for attaining possibility of simulations of biological 

processes having considerable complexity. 

In this paper we do not discuss methods of modelling related directly to quantum mechanics. 

Accordingly, many fine processes is not described by the discussed formal system. In particular, 
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we cannot consider quantum tunnelling of proton, for example. This is so since the first aim of 

this paper has been devoted to discussion of integrated molecular dynamics and continuum 

mechanics description. However, an open way for incorporation of new mathematical models is 

left. It is expressed by a freedom in determination of elementary dynamical systems. In particular 

such systems can be associated with quantum mechanical description. If we introduce the ele-

mentary dynamical system which describes single elementary particles such as electrons and 

nuclei then we are able to discuss for instance charge transfer or motion of protons in molecular 

systems, viewed as important processes in biology. However, in such a case particular methods 

of realization of dimensional reduction procedures have to be elaborated. 

7. FINAL REMARKS 

Mathematical methods applied in modelling biological structures which are observed in 

literature have attained a stage of development which suggests discussion on possibility of 

modelling whole cell as a system of molecular processes. This fact has been the main premise for 

formulation introduced here formal system. It is my conviction that such a formulation in its more 

advanced form could be a candidate to modelling the whole cell. Such aim could be attained 

gradually and have to be coordinated with knowledge provided by molecular biology as well as 

with increasing possibilities of numerical simulations. 

It seems to be reasonable striving to construction the most simple model of cell perhaps 

supported considerably by phenomenological assumptions. Such a model would be a starting 

point for gradual improvements taking onto account more fine processes. 

Summarizing, we have proposed above the formal system aimed at modelling biological 

processes in cell which induces, at this stage of its development, some investigation programs. 

Furthermore, construction of this formal system takes into account possibilities of extension it 

by incorporation models of more fine phenomena appearing in biological structures. It is also 

expected a progress in defining or in classification of particular biological structures or processes 

within the formal system, following together with realization of the investigation programs 

proposed. 
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