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A b s t r a c t . Implicit interval methods of Adams-Moulton type for so lv ing the initial va lue problem are pro-
posed. It is proved that the exact solution of the problem belongs to interval-solutions obtained by the con-
sidered methods. Furthermore, the widths of interval-solutions are estimated. 

1. INTRODUCTION 

In this paper we direct our attention to the interval multistep methods for solving the initial 
value problem. Interval numerical methods are very interesting due to interval-solutions obtained 
by such methods which contain their errors. 

Using a computer implementation of the interval methods in floating-point interval arithmetic 
together with the representation of initial data in the form of minimal machine intervals, i.e. by 
intervals which ends are equal or neighbouring machine numbers, let us achieve interval-solutions 
which contain all possible numerical errors. 

Explicit interval multistep methods of Adams-Bashforth type have been considered by Šokin 
[6, 16]. As we know from the analysis of conventional methods, higher orders of accuracy can 
be achieved by applying implicit methods rather then explicit one. For this reason implicit interval 
multistep methods of Adams-Moulton type are the subject of our present research. 

This paper consists of six sections. In Sec. 2 we define the initial value problem and present 
the conventional implicit Adams-Moulton methods whose interval equivalents are introduced in 
Sec. 3. We also prove that the exact solution of the initial value problem belongs to interval-so-
lutions obtained by the interval Adams-Moulton method (Sec. 4). At the end of our paper we esti-
mate the widths of interval-solutions obtained by the interval methods considered (Sec. 5) and 
draw some remarks (Sec. 6). 

2. THE INITIAL V A L U E PROBLEM 

AND CONVENTIONAL ADAMS-MOULTON METHODS 

As we know the initial value problem is concerned with finding the solution y = y(t) to a 
problem of the form 
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where fn = f (tn, yn). Let us note that in general to apply (2.4) we need to solve the system 

of nonlinear equations with respect to the unknowns y n. 

After replacing the unknown values y(tn-k), y(tn-k+1), ..., y(tn-1) approxi-

mations yn-k, yn-k+1, ..., yn-1 obtained by applying another method (for example by a Run-

ge-Kutta method) and neglecting the error term hk+2¯γk+1ψ(η, y(η)) we are given the following 

formula known as the k-step implicit Adams-Moulton method 

and 

where 

(2.3) 

(2.4) 

(2.2) 

Let us choose a positive integer m and select the mesh points t 0 , t 1 , . . . , tm where tn - nh 

for each n = 0,1, . . . , m and h = ξ / m. Assume that an integer k =1,2, . . . will state how many 

approximations yn_k, yn_k+1,..., yn-1 of the exact solution at the previous k mesh points 

have to be known to determine the approximation yn at the point tn. 

As shown in [7] the exact solution of (1) considered on the interval [tn-1, tn] has the form 

and there exists a constant L > 0 such that for each and all we have 

fulfilled if the function f is determined and continuous in the set 

exists and is unique. The theory of ordinary differential equations states that these conditions are 

where We will assume that the solution of (2.1) and 

(2.1) 

subject to an initial condition 
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Let us denote: 

Δt and Δy - sets in which the function f(t, y) is defined, i.e. 

for n - k, k +1,..., m, where 

(3.1) 

terval one-step method, for example an interval method of Runge-Kutta type (see [3], [10] or 

[11]). Then, the implicit interval method of Adams-Moulton type we define as follows 

F(T ,Y) - an interval extension of f(t, y) (for a definition of interval extension see e.g. [4], 

[13] or [16]), 

• the function F(T,Y) is defined and continues for all and 

• the function F(T,Y) is monotonic with respect to inclusion, i.e. 

• for each and for each there exists a constant L > 0 such that 

where d(A) denotes the width of A (if A = ( A1, A2, ..., AN)T , then the number d(A) is 

• the function and 

• the function 

Now, after making the above assumptions, we are able to construct the implicit multistep in-

terval method of Adams-Moulton type. First, let us assume that and the intervals Yi 

such as for i = 1, 2 , . . . , k -1 are known. We can obtain such Yi- by applying an in-

defined by d(A) = 

is defined for all 

is monotonic with respect to inclusion. 

- an interval extension of 

Let us assume that 

3. IMPLICIT INTERVAL MULTISTEP METHODS 

OF ADAMS-MOULTON TYPE 
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where 

Let us note that (3.2) is a nonlinear interval equation with respect to Yn (n = k, k +1,..., m). 
It follows that in each step of the method we have to solve an interval equation of the form 

(3.3) 

(3.2) 

for n = k, k +1,..., m, where 

The formula (3.1) can be written in the equivalent form 

In particular for a given k we get the following methods: 
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where 

If we assume that the function G is a contraction mapping, then the well-known fixed-point 

theorem (see e.g. [9] or [14]) implies that the iteration process 

(3.4) 

is convergent to Y*, i.e. for an arbitrary choice of Let us recall 

that a function G is called a contraction mapping if 

where p is a metric, and α < 1 denotes a constant. 

Let us note that using the fact that 

the equation (3.1) can be written in the form 

(3.5) 

(3.6) 

For the equation (3.5) the iteration process (3.4) is of the form 

and we usually choose Yn

(0) = Yn_1. 

4. THE E X A C T SOLUTION VS. I N T E R V A L SOLUTIONS 

For the method (3.2) we can prove that the exact solution of the initial value problem (2.1) 

belongs to the intervals obtained by this method. Before that it is convenient to present the 

lemma. 
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where Because and ti = ih for i = 0,1, . . . , m, we get 

where 
follows that 

From the assumption we have and from the Lemma 1 it 

(4.5) 

(4.4) 

for n = k, k+1,..., m, where Yn = Y ( t n ) are obtained from the method (3.2). 
Proof. Let us consider the formula (2.2) for n = k. We get 

Theorem 1. If and for i = 1, 2 , . . . , k-1, then for the exact solution 

y(t) of the initial value problem (2.1) we have 

From (2.3), (4.2) and (4.3) the inclusion (4.1) follows immediately. 

(4.3) 

But 

This implies that 

Proof. Since F(T, Y) is an interval extension of f(t, y), then for each 

for i = n-k, n - k + 1 , ...,n-1, and hence we get the 
inclusion as follows 
Moreover, 

and for each This fact implies that where 

(4.2) 

(4.1) 

for any j = 0,1, . . . , k - 1 , k we have 

where Yi = Y(ti), than Lemma 1. 

Applying Taylor's formula we have 



where the constants A, B and C are independent of h. 

Proof. Substituting (3.3) and (3.6) into (3.2) we have 
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(4.6) 

Moreover, y'(t) = f(t, y(t)). Since 

then 

(5.1) 

and Yn for n = k, k +1,..., m are obtained from (3.2), then 

where 

Theorem 2. If the intervals Yn for n = 0,1, . . . , k-1 are known, i = 0,1, . . . , m, 

but - according to the formula (3.2) - this is the interval Yk. This conclusion ends the proof for 

n = k. In a similar way we show the thesis of this theorem for n = k + 1, k + 2,..., m. • 

5. WIDTHS OF I N T E R V A L SOLUTIONS 

Thus, we have shown that y (tk) belongs to an interval 

As we assumed, Ψ is an interval extension of ψ . Thus, applying (4.6) and (4.7), we have 

(4.7) 

In addition, F(T,Y) is an interval extension of f (t, y), and hence for each 

and For these reasons we can state that where . Taking 

into account the above considerations, from the formula (4.5) we get 
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(5.2) 

We have assumed that Ψ is monotonic with respect to inclusion. Moreover, if the step size h 

is such that satisfies the conditions 

than 

(5.3) 

(5.5) 

(5.4) 

we can write (5.4) in the form 

Denoting 

where 

Therefore, from the inequality (5.2) we get 

We have also assumed that for the function F there exists a constant L > 0 such that 

From (5.3) we have 

From the above formula we get 
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(5.8) 

(5.9) 

where 

From (5.8) for n = k we have 

and for n = k +1 we get 

Applying (5.9) to the above inequality we obtain 

On the basis of the above assumptions the inequality (5.6) can be written in the form 

where 

The condition (5.7) is satisfied if 

Let us assume that 

that is equivalent to 

(5.6) 

(5.7) 
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(5.10) 

From (5.8) for n = k +2 we get 

Insertion of (5.9) and (5.10) into the above inequality yields 

(5.11) 

Now, from (5.8) for n = k +3 we get 

Applying (5.9), (5.10) and (5.11) to the above formula we have 
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(5.12) 

Thus, for each i =0, l , . . . ,m — k we have 

Applying the notation (5.5) we obtain 

Let us notice that 

and 

(5.13) 
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On the basis of the above we can make the following estimates 
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Thus, from (5.13) we finally get 

for each i = 0,1, . . . , m - k, where 

(5.14) 

Taking into account that T0 = [0, 0], i.e. d(T0) = 0, the inequality (5.1) follows immediately 
from (5.14). • 

6. REMARKS 

The main aim of our paper is a short presentation on the numerical analysis of implicit interval 
methods. As an example we have given interval methods of Adams-Moulton type. At present, 
efforts are being made to develop an appropriate computer system which would provide interval-
-solutions of both explicit and implicit interval methods. Such a system would make it possible 
to provide calculation in standard floating-point arithmetic and in interval floating-point arith-
metic together with interval representation of data in the form of machine intervals. 
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At the moment one of the main problems is concerned with an iteration process used in the 
implicit methods. Such a process cannot be too complicated and should be possible to apply to 
a wide range of interval functions. 
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