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Abstract: The complementary Monte Carlo and series expansions methods of computer simulations have 
been described to investigate the critical behaviour of the Ashkin-Teller model in three dimensions. In the 
first method the invariance of the ratio of the square of the second moment of the order parameter to its 
fourth moment in the critical region has been exploited and some critical points on the phase boundaries 
have been calculated in the regions where the continuous transitions are expected. The continuity of the 
order parameter on the critical lines is verified by a finite size scaling analysis. Large-scale simulations have 
been performed on SGI Power Challenge XL and L supercomputers using the 64-bit random number gene-
rator. The numerically generated series expansions method is described for which the effective algorithm 
for generation of graphs starting from polygons and based on collapsing the unlinked vertices, is introduced. 
The new feature of our algorithm is that for each graph we introduce new links between unlinked vertices 
and we decorate bonds with new vertices, so that more complex graphs in an early stage of the graph gene-
ration procedure are obtained. The resulting set of graphs enables the application of the series expansions 
method and achievement of the precision of allocation of points on the phase diagram comparable to the 
precision of the Monte Carlo method, i.e. at least 3 decimal digits. 

1. INTRODUCTION 

Ashkin and Teller [1] have introduced a model of four-component system by generalization 
of Ising model, which can be interpreted as a two-component system. Fan has shown [2] that this 
model can be expressed in terms of Ising spins, with two spins si and σi at each lattice site (i.e. 

si and o, are variables that can take values +1 or -1). We will refer to it as standard Ashkin-Teller 

(SAT) model. This model can be interpreted as two superimposed Ising models. One of them is 

described in spin variables si and the other in variables σi and in both models there are exclusively 

two-spin interactions of a constant magnitude J2 between the nearest neighbors only. Simul-

taneously, these two different models are coupled by four-spin interaction of a constant magni-

tude J4, also only between couples of spins residing at the nearest neighboring lattice sites. Thus, 

the Hamiltonian of this model is 

(1) 

where denotes summation over nearest neighboring lattice sites and 

If the third-order terms are included [3, 4], we obtain the extended Ashkin-Teller (EAT) 

model, which is described by the Hamiltonian 

user
Tekst maszynowy
CMST 7(1) 67-82 (2001)

user
Tekst maszynowy
DOI:10.12921/cmst.2001.07.01.67-82

user
Tekst maszynowy

user
Tekst maszynowy



68 Methods of Computer Simulations of Phase Transitions in the Ashkin-Teller Model 

(2) 

The SAT model corresponds to K = 0. 

The properties of the EAT model were investigated within the molecular-field approximation 

(MFA) [3], as well as in two dimensions (2D) also within the molecular field renormalization 

group (MFRG) method [4] and the Monte Carlo (MC) method [5], The SAT model in 2D and 3D 

was examined [6, 7] within the Monte Carlo methods and the short series analysis, yielding 

approximate phase diagrams. 

The MFRG results [4] and the Monte Carlo simulations [5] do not confirm the existence of 

the tricritical points in the phase diagram of the EAT model which were present in the diagram 

calculated within MFA. Thus there is the problem of continuous transitions for the SAT model 

in 3D. The latter model seems to exhibit the tricritical point in the antiferromagnetic region [6] 

but both, the simulations and the series analysis supporting this picture, are too short to give a 

definite answer. 

The aim of this paper is to prepare two complementary methods applicable to the 3D SAT 

model which ensure sufficient accuracy of the calculation of positions of the phase transition 

points on the (K4, K2) diagram. These are the Monte Carlo (MC) and the series expansions (SE) 

methods. The first method is widely used and allows controlling the precision of computations 

but simultaneously it is of stochastic character, whereas the latter, although giving the results of 

an asymptotic character, is one of the most reliable ones. 

The simulations of MC type based on the invariance of the ratio of the square of the second 

moment of the order parameter to its fourth moment gave precise location of the phase transition 

point and critical exponents in the 3D Ising model [8, 9], Using this fact we propose these simu-

lations for the 3D SAT model in the critical region. We also present some preliminary results for 

phase boundaries between the paramagnetic phase and the ferromagnetic and the antiferro-

magnetic phases in the 3D SAT model. 

In SE, the classification of the contributions to the terms of different order naturally leads to 

a description in terms of linear graphs whose bonds correspond to the strength of the interactions. 

For a review we refer the reader to the papers by Nickel [10] and Domb [11]. A linear graph is 

a collection of k points, called vertices, and i bonds, so that each pair of vertices is connected by 

at most one bond. The order of a graph is the number of its bonds, whereas the order of a vertex 

is the number of bonds meeting at this vertex. These graphs are fundamental in SE but are also 

used in a wide class of domains from fundamental mathematics to sciences and further to 

linguistics. One of the purposes of our paper is to obtain a complete list of graphs. This is a 

challenging and especially complicated problem for the 3D SAT model, to which also the graphs 

with odd vertex order contribute, in contrast to the situation in the Ising model. 

Traditionally two standard methods of generation of graphs are used in the literature on the 

SE method. The first method, that starts from polygons as the first graphs, produces new graphs 

by collapsing vertices, whereas the second method, originally formulated for star graphs (a star 

graph is a connected graph with no vertex of the property that its removal together with its in-
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cident bonds transforms the graph in a disconnected one) also starts from polygons and leads to 
new graphs by connecting vertices [12] (see also [10,11]). These methods were used successfully 
for the Ising model in which only vertices of even order appear. For the AT-model the first 
method allowed us to complete graphs up to 12-th order only, as it is discussed in section 4. Thus 
we had to look for a more efficient algorithm, since we intended to obtain series up to 14-th order. 

We present here an effective algorithm for generation of closed connected linear graphs in any 
dimension which is the basic tool in SE and enables completing graphs up to the order 14 (and 
even greater). It is an extension of earlier algorithms [13] based on collapsing and connecting the 
unlinked vertices starting from polygons. The graphs form the basis for the numerical generation 
of SE for spin-lattice systems. The appearence of odd order vertices and consequently a great 
number of graphs, complicates also the next steps of series preparation, i.e. colouring and putting 
on the lattice. Thus, also the use of the numerically generated SE to calculate the free energy for 
the SAT model is explained and discussed in details. Estimation of the asimptotic behaviour of 
the SE of the free energy (and similarly other thermodynamic functions) gives the desired 
information about the location of a phase transition point. 

2. DESCRIPTION OF THE MONTE C A R L O METHOD 

Our simulations of the Ashkin-Teller model have been performed on SGI Power Challenge 
XL supercomputers using the 64-bit random number generator. We have generated equilibrium 
configurations of the finite size samples of spins for fixed values of the model parameters. 
Periodic boundary conditions were imposed and thermalization of the initial configurations was 
applied. 

One possible strategy for sampling the configurations of a system is to choose configurations 
completely at random. However there is a serious problem with this approach. If we include with 
equal weights the configurations which bring negligible contributions to the quantities as the 
partition function, at the same time these configurations bring a great unphysical contribution to 
the variance of the internal energy, which leads to serious errors at low temperatures. We can 
alleviate this problem by the so-called importance sampling in which the program takes into 
account the largest possible number of the configurations which bring great contribution to the 
quantities we are trying to calculate. 

Gibbs distribution was sampled using the Metropolis algorithm [14], We started with some 
initial configuration α of spins, and a new configuration α' of the system was generated from α 

by the repetitive application of the importance sampling procedure when flipping succesive spins 

on the lattice. The spins may be selected at random, or each of the spins in the sample may be 

reversed in turn (which is the case here). We either reverse the spin or not, according to some 

initially choosen transition probability, and when each spin of the sample has been visited once 

(on the average or consecutively) we carried out one Monte Carlo step (MCS) per spin. Either 

of these procedures ensures the satisfaction of the accessibility criterion, which states that it must 

be possible to evolve the system from a given starting point to any of its other configurations by 

applying the evolution rule a sufficiently large number of times. 
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In order to decide whether to accept a s ingle spin-flip or not, we compared the energies of the 

n e w and old conf igurat ions. If the energy change E α ' - E α w a s negat ive, then the n e w conf igu-

rat ion w a s automatically accepted; if, h o w e v e r , i t w a s posi t ive, the n e w conf igurat ion w a s ac-

cepted w i t h a probabi l i ty Physical ly it means that both conf igurat ions are in equi-

l ibr ium and none of them arises a t the e x p e n s e of the other. U s i n g this method, we generated 

conf igurat ions w h i c h a l lowed us to calculate phys ical quantities in a direct w a y . 

T h e p h a s e transition point T c w a s determined [5, 8] f r o m the analys i s of the four th order 

cumulant 

(3) 

w h e r e (M n ) denotes the n-th p o w e r of the order parameter averaged over an assembly of indepen-

dent s a m p l e s of the s ize L x L or L x L x L in 2D and 3D, respect ively . For T> Tc and L 
ξ 

w h e r e ξ denotes the correlation length, QL tends t o w a r d s 1/3 w h i c h corresponds to a Gauss ian 

distribution. For T < T c and L ξ, QL va r ie s only w e a k l y wi th tempe-ξ, QL tends to 1. For L 

rature and linear dimension, and stays ve iy close to the value 0 . 8 5 6 [8] in t w o dimensions and to 

0.6233 [8, 9] in three dimensions - the values achieved at the critical point in the limit L This 

number is characteristic of the corresponding Is ing universal i ty class. This behaviour of the cu-

mulant is u s e f u l for determination of T c. O n e may plot QL v e r s u s T for var ious L's and est imate 

T c from the intersection point of these c u r v e s (see [5] and the papers cited therein). 

In order to c o n f i r m that the transition is of the I s ing t y p e we can u s e the f ini te s i z e sca l ing 

relation [15] b e t w e e n magnetizat ion m, temperature T and s ize of the sys tem L: 

(4) 

w h e r e ƒ i s the sca l ing function w h i c h depends on the boundary conditions. I f we expand this 

equation to the f irst order f o r T c lose to T c we h a v e 

(5) 

w h e r e the ampli tudes a 1 and a 2 are temperature and s ize independent. 

3. THE SERIES EXPANSIONS METHOD 

O n e w a y to obtain the information on behaviour of phys ical quantities is to e x p r e s s them in 

the high- or low-temperature ser ies expans ions, and to estimate the asymptotic behav iour f r o m 

these ser ies . T h e longer the ser ies the m o r e accurate the description. 

As an illustration of the calculations of thermodynamic functions, we explain h o w to calculate 

the reduced f ree energy o f the S A T model 

(6) 

u s i n g the SE numerical technique. Here F is the free energy and N is the n u m b e r of s i tes in the 
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where the summation runs over all nonisomorphic graphs g in increasing order, i, j, n, m are 
integer numbers (their sense is explained in the next paragraph) and l is the lattice constant (i.e. 
a number of nonequivalent puttings around 1 site of the lattice divided by a symmetry factor of 
the graph) of a graph g. The value of the number i(g) of nonequivalent puttings of one graph on 
different sites of the lattice depends on the geometry and the size of the lattice. As discussed 
above, below Eq. (10), we sum over all graphs with orders lower or equal to pmax. In the section 
4 we propose the effective algorithm of generation of graphs. 

In the next step graphs are coloured, i.e. a specific spin-spin interaction together with a 
coupling constant is assigned to each bond in the graph, which is connected with the choice of 
a specific model. This assignment has to be made in every possible way to simulate each possible 

lattice. The most important quantity which allows us to calculate the free energy (and the other 
thermodynamic functions) is the partition function Z 

(7) 

(8) 

(9) 

(10) 

where we will later put K1 = K2. For further calculations we perform the following transformation 

and we use the fact that σi, si = ±1, which allows us to write down all nonequivalent equations 

(there are 4 such equations) and to obtain the expressions for the constants a, b, c, d in terms of 

the couplings K1, K2, K4, e.g. 

Thus, we have 

where v1 = b/a, v2 = c/a, v4 = d/a, z is the coordination number of the lattice. 

After multiplication of all terms in the product in Eq. (10) we obtain a sum of other terms that 

contain some powers of spins, v1, v2 and v4. The trace can be calculated separately for every term 

and then only these terms in which spins appear in even powers give nonzero contribution to the 

sum. This means that spins contribute a factor 1 in every nonvanishing term. We can order the 

terms with increasing p (p is the sum of powers at v1, v2 and v 4 ) and truncate the sum rejecting 

terms with p > pmax, which should be chosen high enough to obtain the desired precision of 

computation. 

Such an ordering of terms leads naturally to a description in terms of linear graphs in which 

bonds correspond to these interactions between spins which are specified in the Hamiltonian. The 

fact that spins appear only with even powers means that only closed graphs give nonzero 

contribution to the free energy. 

Using graph representation we can write the partition function (10) in the form 

(11) 
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c o n f i g u r a t i o n of the sys tem in SE. A coloured graph g contains j bonds represent ing σ-σ 

interaction and each interaction introduces the factor v 1 to the term that is represented by this 

graph in Eq. (11). Similarly in this graph we h a v e n bonds w h i c h represent s-s interactions and 

the factors v 2 . The remaining m bonds in this graph represent s σ - s σ interactions introducing the 

factors v4 to the term under consideration. T h u s the order p of the graph is p =j + n + m, as 

mentioned above. Here also graphs wi th odd number of bonds j o i n e d to a ver tex are p o s s i b l e to 

get coloured, which means that we h a v e many more graphs when compared to those used f o r the 

I s ing model . 

Fol lowing Eqs (6) and (11) and expanding In we get the f ina l e x p r e s s i o n f o r computation of 

the reduced f r e e energy 

Table I. The scheme of the algorithm of graph generation 

4. THE ALGORITHM FOR GENERATION 

OF CLOSED CONNECTED LINEAR GRAPHS 

We p r o p o s e here the algorithm w h i c h generates all p o s s i b l e c losed connected linear graphs 

Ncompl, are completed, w h e n the order of a ver tex is l imited to a 

certain v a l u e d , i.e. the number of bonds jo ined at a vertex is lower or equal to A. No limiting case 

is achieved by putting A = Nmax, w h e r e Nmax is the maximum order of the graphs to be generated. 

A and Nmax are parameters of the algorithm as descr ibed in T a b l e I. If we label the vert ices of a 

graph as 1 ,2 , . . . , k, it can be characterized by its adjacency matrix. This is the (k x k)-matrix wi th 

matrix elements M i j = M j i =1 if the vertices are connected by a bond, and M i j = M j i = 0, if not, and 

wi th diagonal e lements equal to zero. 

We genera te g raphs starting f r o m p o l y g o n s which are the s implest graphs, and w r i t e their 

labels to the graph list. Call these the start ing graphs. N e x t we s u c c e s s i v e l y consider each graph 

W h e n we put K 1 = K 2 , as it should be for S A T model, we obtain b = c and of course v 1 = v 2 . 

(12) 

of the i-th order, w h i c h for i 
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from the list to produce new graphs, which also are added to this list as new graphs. T h e scheme 

of the algorithm is illustrated in Table I, whereas the subroutine N e w G r a p h s that generates new 

graphs from the already obtained one and stored in array G R A P H S , is shown in Table II. In the 

f irs t s tep of graph processing (Table II) we choose all possible pairs of vertices that are not 

directly connected. This is achieved by checking if the ( i , j ) element of the graph adjacency matrix 

is 0. Then the subroutine splits into two independent paths. For every pair of not directly 

connected vertices: (a) we collapse a vertex with a higher label (which then disappears from the 

graph labelling) onto one with a smaller label (Step 3 in Table II), forming a possible new graph 

(we will refer to this as the collapsing procedure); (b) we connect these vertices with additional 

bonds (Steps 4-6 in Table II), forming other possible new graphs (we will refer to this as the 

connection procedure). This means that we have to generate graphs up to some higher order Nmax 

to f ind all possible graphs up to the required order Ncompl. 

Table II. The scheme of the subroutine NewGraphs (K, array GRAPHS, N g r , Nmax) for generation of new 

graphs from K-th graph in array GRAPHS 
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In order to identify the graphs it is important to give jus t a single label to isomorphic graphs. 

This is realized using a canonical labelling [11, 12, 16]. T h e label of the graph is the vector 

composed of the overdiagonal elements of matrix M read by rows starting f rom the left to right 

and from the top to bottom. The vector, consisting of bits 1 and 0, forms a binary number. By the 

graph label or graph key we mean the maximum binary number we can obtain by relabelling the 

vertices, e.g. by considering the k! permutations of the vertex labellings. This is a unique way for 

labelling the graphs. All isomorphic graphs get the same label or key. Graphs with different keys 

are topologically different. 

Fig. 1. Illustration of the extension of the connection procedure performed in Steps 5 and 6 on the scheme 

in Table II. For simplicity the examplary graphs are put on the triangle lattice. 

U s i n g the key we check if the newly generated graph, obtained by the collapsing or con-

nection method, is present in our graph list (array G R A P H S in the algorithm). If not, the new 

graph is added at the end of the list of graphs. The algorithm stops when all graphs from the list 

have been submitted to the collapsing and connection procedures and we do not obtain a new 

graph from the last one in the list. 

Our idea is not only to bring together these two standard procedures of graph generation, 

additionally we propose in procedure (b) to connect vertices not only with a simple line, but with 

a line decorated with additional vertices. Thus path (b) in fact splits into many paths. In the first 

one (Step 4 in Table II) we introduce a simple diagonal in the graph and we obtain the first new 

graph. In the next path (Steps 5-6 in Table II) we introduce one additional vertex on this diagonal 

and another new graph arises. Then we subsequently put two and more vertices on the diagonal 

obtaining additional new graphs. This procedure stops when the number of vertices in new graph 

reaches Nm a x . 
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Table III. The numbers of generated closed connected linear graphs of higher orders in terms of the values 
of N m a x - the maximum allowed order of graphs, when applying collapsing procedure only. For boldfaced 
numbers all graphs of a given order are completed. The maximum number of bonds joined at a vertex is 6 
(as for a simple cubic lattice). The numbers in italic are not verified which means that they contain a few 
percent of double graphs 

Table IV. The numbers of generated closed connected linear graphs of higher orders in terms of the values 
of Nmax - the maximum allowed order of graphs, when applying our procedure. For boldfaced numbers all 

graphs of a given order are completed. The maximum number of bonds joined at a vertex is 6 (as for a simple 
cubic lattice). The completness of data with * should be confirmed by calculation with Nmax = 18. The 
numbers in italic are not verified which means that they contain a few percent of double graphs 

This extension of the standard connection procedure is illustrated in Fig. 1. T h e original graph 

(K-th graph selected in Step 2 of the algorithm, T a b l e I) is (a). Its b o n d s are d r a w n with the sol id 

line; (i,j) is the pair of vert ices considered in Step 2 of T a b l e II. T h e next graph (b) is this in 

which one extra bond (the dotted line) is included to connect the vert ices i and j (Step 4 in T a b l e 

II). Moreover, the next three graphs (c-e) i l lustrate the e f f e c t of our extens ion of the connection 

procedure in Steps 5 and 6 from T a b l e II, w h e n Nmax = 10. 1, 2 and 3 extra ver t ices (denoted as 

e 1 , e 2 , e 3 in Fig. 1) are introduced on the dotted l ine connecting the ver t ices i and j . O n e should 

remember that these n e w graphs w i l l a l so be sub jec ted to the connection procedure. 

To find a complete list of all graphs up to s o m e order Ncompl is a problem. T h e bas ic d i f f icul ty 

is to obtain graphs with a v e r y complicated structure. W h e n we introduce additional ver t ices on 
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the diagonal connecting two not directly connected vertices in the graph considered we quickly 

generate new complicated graphs, since these graphs will also undergo this procedure. Thus we 

reach Ncompl at a lower value of Nmax. 

It is obvious that Nmax is the critical parameter in the process of the generation of graphs. The 

realization of a high Nmax is limited not only by the amount of operational memory required 

(writing on and reading from hard disks consumes a prohibitively long time), but first of all by 

the computing time needed for comparing the keys. Because the number of graphs increases 

rapidly when Nmax increases, this comparison time becomes prohibitively long. 

We implemented our algorithm in FORTRAN 77 to be able to use variables of integer type 

with the length of 1 byte. The basic element in the algorithm is the list of labels of the already 

generated graphs which takes far more than 90% of the memory used by the program. In our 

implementation it is an array GRAPHS which is just of the integer* 1 type. 

For the largest graphs we needed 136 digits to represent a graph label. For our purposes it is 

the most convenient form of a graph label because it allows one to colour the bonds of a graph 

numerically (colouring of bonds is assigning a specific spin-spin interaction together with a 

coupling constant to every bond in the graph as it is explained in section 3). As mentioned above, 

in the SAT model there are three different colours of bonds in graphs representing three types of 

interactions that appear in this model. The most convenient way to represent a colour for a given 

bond is to set the non-zero elements of the adjacency matrix equal to 1, 2 or 3, and this notation 

is used for the graph label. 

It is also possible to put the key of a graph in a binary form. Then one needs only 3 eight-bytes 

variables to keep a graph label in memory. This reduces the memory needs by a factor of 5.6. It 

was not necessary to apply it to this problem because we did not use the whole accessible memory 

in our computations. For the run with Nmax =17 our program used only about 150 MB of RAM, 

but for computation with a greater value of Nmax one should switch to this way of storing the 

labels of generated graphs. We might also expect a reduction of time consumed for the com-

parison of graphs. 

The special problem was also implementation of canonical labelling of the newly generated 

graphs. Considering the n! possibilities of numbering n vertices in a graph was too time con-

suming. We have constructed our own procedure that starts from giving number 1 to a vertex of 

the maximum order and all possibile vertices are taken into account. Using the procedure with 

this condition all generated graphs were verified for elimination of double graphs up to 14-th 

order in data presented in Tables III-V, but even the use of this subroutine to calculate the labels 

of new graphs when generating them takes too much computing time. We had to construct 

another procedure of less complexity (i.e. with a lower number of operations) using some 

topological properties of graphs (for the review see [17] and the papers cited therein). We 

obtained a reasonable time of graph generation but as a result of this simplification the final list 

contains a few percent of double graphs which were eliminated as we explained above. 
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Table V. The numbers of generated closed connected linear graphs of higher orders in terms of the values 
of Nmax - the maximum allowed order of graphs, when applying connection procedure only. The maximum 
number of bonds joined at a vertex is 6 (as for a simple cubic lattice). The numbers in italic are not verified 
which means that they contain a f ew percent of double graphs 

5. RESULTS AND CONCLUSIONS 
5.1. The Monte Carlo simulations 

To present the MC method, we have performed our simulations for the SAT model on the 3D 
simple cubic lattice and for the regions of the parameter space (K 4 , K2) where the phase 
transitions are expected to be continuous, obtaining some preliminary results. We have used (sσ) 

as an order parameter M. In practice, as suggested by Binder [15], we calculated root mean square 

(RMS) value of the order parameter to avoid trouble with a restricted ensemble. 

To improve the accuracy we have used the following finite size scaling law (see [15]) 

(13) 

which follows from Eq. (5). This relation suggests that Lβ/v M should approach a straight line 

independent of L, if we have chosen the proper values for Tc and the critical exponents. In 

addition, in the region of continuous phase transitions the Ashkin-Teller model belongs to the 

same universality class as Ising model for which the critical exponents are known. Making use 

of this fact we have put β = 0.6301 and v = 0.3267 [8], 

An example of such an analysis for the SAT model is shown in Fig. 2, where we have ploted 

the L-dependence of Lβ/v MRMS with K4 = -0.34 i.e. in the antiferromagnetic region. For this 

region the sublattice magnetization (calculated by storing the data from one of the two equivalent 

sublattices) is taken into account as the order parameter MRMS (as mentioned above). For a 

properly chosen value of K2, here it is K2 = 0.334, and for L 14 the data oscillate around a 

constant value within the experimental error, which means that the two above values of the 

coupling constants are the coordinates of the critical point (Kc

4, Kc

2) on the phase diagram. 

Moreover, it confirms the continuous character of the phase transition. 

For the 3D SAT model we have investigated the ferromagnetic and antiferromagnetic regions 

of the parameters (K 4 , K2) with continuous transitions to the paramagnetic phase, using systems 

with linear size L 26. The corresponding estimates of the critical couplings Kc

2 as a function of 
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Fig. 2. Size-scaled values of the order parameter Lβ/v MRMS calculated for K4 = -0.34 and for different values 

of linear size L of the cluster. The values of the Ising critical exponents are assumed 

K c

4 are presented in Table VI. Our results for Kc

2, (denoted as K f

2 , K
a f

2 for the ferro- and antiferro-

magnetic region, respectively) are g iven in the second and the fifth column w h e r e a s the prev ious 

est imates KD

2 of Ditzian et al. [6] are d i sp layed in the third and the s ixth column. 

In the Is ing limit K 2 = 0 we h a v e estimated the critical coupl ing at K c

4 = 0 . 2 2 1 5 ( 4 ) w h i c h 

agrees within the error bars with that found by Talapov et al. [9], us ing the Cluster Processor and 

n e w l y constructed special-purpose computer. 

Table VI. The ferromagnetic and antiferromagnetic critical couplings for the continuous phase transitions 

in the 3D SAT model 

Our simulations have been performed on SGI Power Chal lenge supercomputers with the u s e 

of 32- and 64-bit random number generators for the sys tem s izes L up to 26 f o r 3D S A T model. 

CPU time used for the simulations varied from a f e w minutes for the smallest L va lues up to 4 8 . 6 

days f o r the S A T model with L = 26. A typical duration of our s imulation w a s b e t w e e n 10 and 

60 hours of CPU time. 

In the simulations we a lways apply thermalization of the initial configurations and it is enough 

to take 10 5 M C S for this purpose. Then we calculate partial a v e r a g e s of the cumulant Q usual ly 



G. Musiał et al. 79 

after each 10 x 5 x 105 MCS. The factor 10 reflects the fact that for the calculation of a partial 
average of Q we take results only every 10-th MCS to aviod correlations between sampled 
configurations of spins in the system. Final averages as well as errors were calculated mainly 
from five to six partial averages. Experimental error never exceeded 1% of the value of the 

cumulant Q, while for the critical values of the parameters, it was less than 10-3 when a finite size 
scaling analysis was performed; if not, the error was less then 6 x 1 0 - 3 . 

In one single MCS our computer program visited lattice sites one after the other and for each 
site two independent decisions were taken, namely, whether to accept the flip of spin s and for 
spin o. In the antiferromagnetic phase the system is composed of two sublatices and 
magnetization of one of them was taken as an order parameter. Each of the two sublatices was 
divided into four identical subsublattices for 3D SAT model. The program visited all sites of one 
subsublattice then continuing over another one. 
5. 2. The series expansion method 

Application of the SE method to the 3D SAT model with a precision comparable to that of 
MC method is limited by the disposal of the closed linear graphs completed up to the required 
order, as presented in section 3. Algorithms presented in literature allow completion of these 
graphs up to the 12 order in real time, which is the consequence of the fact that also graphs with 
odd order vertices contribute to the SAT model. Thus, we had to look for a more efficient 
algorithm, since we intended to complete graphs up to the 14-th order. We only have to complete 
closed connected linear graphs, because all muliticomponent ones can be obtained as simple 
combinations of the connected ones. 

The numbers of generated closed connected linear graphs of higher orders in terms of the 
values of N m a x - t h e maximum allowed order of graphs when applying standard procedure (which 
is called the collapsing procedure here) and our procedure are presented in Tables III and IV, 
respectively. Our procedure allows the user to complete graphs up to a much higher order then 
the standard procedure at the same value of parameter Nmax, which obviously is the critical para-
meter of the cost of calculations. At Nmax = 15 the difference is only 1 order, but the effectiveness 
of our procedure is clearly seen at a higher Nmax, because our procedure is partially a combination 
of the collapsing and connection procedures. For the sake of comparison we present also the re-
sults for the latter in Table V. They are rather poor when compared to the results shown in Tables 
III and IV, due to the fact that some graphs cannot be generated in this way. 

We also compared the results of our algorithm presented in Table IV to those of Balińska and 
co-workers [17]. They call these graphs the connected ƒ-graphs with ƒ= 6 and the minimum vertex 

order 2. We collected in Table VII the numbers of these graphs for the particular numbers of 

bonds and numbers of vertices. We found no differences up to the order 11, up to which the 

graphs in [17] were completed from our point of view, i.e. when ordering them by the number of 

bonds in the graphs. The boldfaced numbers have not been known in the literature yet and are 

consistent with the asymptotic estimates of Balinska [18] and with those of Bender, Canfield and 

McKay [19] (and the papers cited therein). 
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Table VII. The numbers of all connected ƒ-graphs with ƒ= 6 and the minimum vertex order 2 (i.e. closed 

graphs - no end vertices). Nb denotes the number of bonds 

O n e can propose richer forms than a line decorated with vertices to connect the vertices -

Steps 5 and 6 in the scheme presented in Table II. For instance, the simplest graphs can also be 

used for vertices connection, i.e. when graph (c) in Fig. 1 has an extra dotted bond between the 

vertices i and j , or when graph (e) has an additional dotted bond between the vertices e1 and e3 

then, the i and j vertices are connected via a triagle. There are two reasons against such an 

extension of the algorithm: a) these forms of graphs will appear in the later steps of the algorithm, 

b) it introduces a great number of comparisons of the graph keys. Our procedure is a compromise 

between the degree of complication of the algorithm and the operational memory needs. T h e size 

of memory needs may be reduced by the use of a binary representation of graph keys, as we 

indicated in section 4. There is the only one critical parameter - t ime of computat ion. Thus , we 

have to minimise the number of calculations and comparisons between graph keys in the 

algori thm. Our algorithm is the right s tep in the direction towards reducing the a lgor i thm's 

complexity (i.e. the number of operations to obtain the required value of Ncompl). 

After the set of closed connected linear graphs has been completed, we have to generate and 

add to i t all mult icomponent graphs up to the required order N c o m p l . We complete the 

mul t icomponent graphs regarding each possible combination of the connected ones and 

calculating the canonical label of each obtained graph. Each new graph is compared to each 

previously obtained graphs before storing to aviod double graphs. 

The resulting set of graphs should be arranged according to increasing orders of the graphs. 

In the next two steps of the numerically generated SE method these graphs are coloured and put 

on the lattice. These steps and the application of the method to the 3D S A T model are explained 

in section 3. N o w the series expansion is completed and is of the form shown by E q s (11) and 

(12). Taking particular values of the model parameters we can estimate the asymptotic behaviour 

f rom these series in the standard way [11] (and the papers cited therein) to obtain the information 

on behaviour of the model in the critical region. The longer the series the more accurate the 
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description. Using our procedure of graphs generation one can complete graphs even up to the 
order Nmax = 15 in a real time, which should be compared to Nmax = 10 used in [6] (the 11-th 
order was not completed). 

5. 3. Concluding remarks 

In the 3D SAT model our preliminary MC results are more accurate than those of Ditzian et 
al. [6] and suggest that also the run of the line of the continuous phase transitions in the 
antiferromagnetic part of the phase diagram is different from that of these authors. It suggests that 
this line may be extrapolated similarly to that found previously [20], As to the tricritical point in 
the 3D SAT model, its existance has not been absolutely confirmed yet. The simulations in the 
vicinity of non-Ising universality class have to be performed extremely carefully. The estimates 
given in Table VI are calculated from the corresponding 6 partial averages, each consisting of 
several milions of MCS per spin. 

The resulting set of graphs is the basic element for the application of the numerically 
generated SE, which are necessary to complete the analysis of the 3D version of many spin-lattice 
systems like the SAT model with a sufficient accuracy. Here we expect the precision of allocation 
of points on the phase diagram comparable to the precision of the Monte Carlo method, i.e. at 
least 3 decimal digits. The SE analysis of the 3D SAT model is in preparation. It is worth noting 
that the procedure of generation of graphs which is proposed here is independent of the choice 
of the model and the lattice geometry, thus this result is of general character. 

Using our experience in studying the 2D EAT model [4, 5], the 3D Ising model [8], the 
methods and the algorithms presented here, we plan to consider the 3D SAT model, whose phase 
diagram is still not fully resolved and rises many interesting points as discussed above. 
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