
COMPUTATIONAL M E T H O D S IN SCIENCE AND TECHNOLOGY 7 (1) , 4 1 - 5 4 (2 0 0 1)

COMBINATORIAL STRUCTURES IN SPIN MODELS:
ALGORITHMS FOR GENERATION OF OPERATOR MATRICES

WOJCIECH FLOREK

Adam Mickiewicz University, Institute of Physics

Umultowska 85, 61-614 Poznań, Poland

e-mail: florek@spin.amu.edu.pl

Abstract. Two combinatorial algorithms, generation of ordered partitions of N with no more than m parts
and decompositions of N-element set into subsets with cardinalities given by a partition [k] = [k0 k1... km-1]
are presented and their possible applications to finite (mesoscopic) spin systems are indicated. The flow
charts, listings, and results of test runs are provided.

1. INTRODUCTION

In the previous paper [1] a method of solving an eigen problem of a Hamiltonian acting in
a finite space of states were presented. This method is based on the earlier article [2], where an
expression for operator matrix elements was formulated. Application of this formula needs some
group-theoretical and combinatorial structures to be introduced and then generated. Some steps
can be carried out with use of standard procedures, however two of them (the generation of

partitions of N with no more than m parts and the decomposition of N-element set into
nonempty subsets with cardinalities require new solutions - at least
modifications of the standard procedures. These tasks are related, since ordered partitions [k] =
[k0, k1,..., km-1] of N into m non-negative parts generated in the first step are input data in the

second step. The main ideas of solutions proposed here were presented in the previous work [1],
whereas this paper is devoted to more detailed discussion.

Though algorithms have been implemented in FORTRAN (F77 and F90) and C, they are pre-
sented below in the Pascal-like convention (without semi-colons), what is more readable. Some
bunches of standard instructions are replaced by one command (especially the "print" command),
since they are not important to the presentation of algorithms. The flow charts are also included.
The last implementation and compilation were done under Linux (Red Hat 6.2) with egcs-2.91.66
on the Pentium 300 MHZ PC and the provided timings have been obtained on this machine.

2. ORDERED PARTITIONS OF N

WITH NO MORE THAN m NONZERO PARTS

One of algorithms for the generation of partitions produces them in the antilexicographic
order, i.e. a partition [k] is generated before a partition [k '] if a word k'0 k'1 ... k'm, precedes
lexicographically a word k0 k1 ... km. It means that there exists such
k'I for I < l and k'l < kl. This algorithm makes a use of two arrays: S[m] containing pairwise
different parts and R[m] with multiplicities (repetitions) of these parts [3,4], so it is easy to print

min (m, m') that ki =

user
Tekst maszynowy
CMST 7(1) 41-54 (2001)

user
Tekst maszynowy
DOI:10.12921/cmst.2001.07.01.41-54

user
Tekst maszynowy

42 Combinatorial Structures in Spin Models

on the other. In order to generate partitions with no more than m parts the standard algorithm is

used but for each generated partitions its associated counter-part is printed out. Hence, the array

R is preserved in the algorithm proposed (but now is called mul). However, for the further

purposes it is more convenient to have partitions written as vectors [k0, k1,..., km-1], so the array

S is replaced by an array par[m] and, therefore, some new modification rules are necessary. It

needs introductions of two parameters, fp and lp, related to the first and the last part of the

original (not associated) partition, respectively. During the generation these indices can reach any

value from the interval [0, m), but for control purposes they can be also negative (-1, in fact). A

flow chart of the proposed algorithm is presented in Fig. 1. The block "err" controls read

parameters and stops the program if imposed limits are broken (too large or too small N and m).

The other parts are briefly described below and their listings are presented.

In the first block all arrays and variables are initialized. It is easy to notice that the first printed

partition consists of at most two different numbers: [N/m] = jd + 1 and [N/m] = jd. If jm = N mod

m than the multiplicities of these parts are jm and m -jm, respectively. Hence the associated (and

generated, in fact) partition has jd parts equal m and one part equal jm. Therefore, in line 06 we

have mul[0] := jd and the array par is initialized in the line 08. Since at this moment a remainder

is unknown, then the first and last parts are the same (see line 07). Next the first jm parts have to

be increased and, simultaneously, mul[lp] has to be set to 1. (Note that mul[0] need not to be

modified). The index lp is determined relatively with respect to m: since 0 corresponds to m

on the one hand, and

For example, partitions [k] = [6,42, 2] and [k '] = [42, 32, l2] are associated, since we have:

Introducing the multiplicities R[j] this definition can be rewritten as [5]:

out partitions in the notion The algorithm presented below exploits the notion

of associated partitions [5], Formally, the partition [k '] associated with [k] is determined by the

following formula:

W. Florek 43

Fig. 1. Partition generation

Fig. 2. Initialization and generation of the first partition

44 Combinatorial Structures in Spin Models

Fig. 3. Generation of the consecutive partitions

(the first part of generated partition) then jm (the last part, respectively) corresponds to m - jm.

For example, when N = 7 and m = 3, then jd= 2 and jm= 1, so after the first step one obtains:

[mul[0]= 2, par = [2, 2, 2], fp = lp = 0]

what is modified in the second step to

[mul[2] = 1, par =[3,2,2], fp = 0, lp = 2]

and the associated partition equals [3, 3, 1], i.e. the first (antilexicographically) partition of 7 with

the first part equal to 3.

The generation of partitions ends when all parts equal 1, i.e. [k] = [1N] and [k'] = [N, 0,..., 0],

So, in the present modification it corresponds to the condition fp = m - 1. In the other case the

W. Florek 45

next partition is generated. At first all parts equal 1 are removed. Such parts appear in [k] if

lp = m- 1 or, in the other words, k'0 >k'1. Of course mul[m - 1] has to be set to zero and the new

last part has to be determined. It can be done by a repeat... until loop, as in the presented listing,

or by calculating a number of parts equal to par[0] (it is at least two, since par[0] = par[1] now).

Removed 1 's and the last part jd = m- lp are summed up (see the line 29) and decomposed into

jd - 1 parts in a similar way as N was decomposed into m parts in the first partition. For N=7

and m = 3 this algorithm generates the following eight partitions (below they are presented with

their associated counter-parts):

[3,2,2] [3,3,1]

[3, 3, 1] [3,2,2]

[4,2,1] [3 ,2 ,1 ,1]

[5, 1, 1] [3, 1, 1, 1, 1]

[4, 3, 0] [2 ,2 ,2 ,1]

[5,2, 0] [2 ,2 ,1 ,1 ,1]

[6,1,0] [2, 1, 1, 1, 1,1]

[7, 0, 0] [1 , 1 , 1 , 1 , 1 , 1 , 1]

The results obtained on the Pentium 300 MHZ machine are presented in Table I. The timings

are calculated as mean values of ten through million (for small values of N and m) runs of a test

program without control and printing blocks. The cases when the number of partitions is greater

than 232 have not been tested. A number of steps necessary to generate a new partition is

independent of N and m, as in the standard procedure [3,4], The visible tendency of a bit faster

generation for large N and small m is caused by shorter test loops for large N and shorter

substitution loops for smaller m (lines 33, 38,43).

Table I. Number of partitions NP and generation speed (partitions per second)

for some values of N and m

46 Combinatorial Structures in Spin Models

Fig. 4. Modified procedure of subsets generation

3. DECOMPOSITION OF N-ELEMENT SET INTO m SUBSETS

There are some algorithms to generate k-element subsets of N-element set [3,4], however it

seems they can not be modified to generate m subsets of cardinalities k0, k1,..., km-1, where [k]

is a partition of N. The proposed solution is based on an algorithm generating k-element subsets

in the lexicographic order, i.e. it starts from {0,1,..., k-1} and goes through {0, 1,..., k-2, k},

..., {0, 1,..., k- 2, n} to {n-k , ..., n-l}. This algorithm is applied at different levels to many A'-

element sets and their ¿-element subsets, so it has been included as a function. Two parameters,

the cardinalities of a set and a subset, are transferred to the function "by value", whereas the other

two - "by address" (the subset a[k] and the so-called moving point pp). In the actual imple-

mentation p is returned as the function value. Moreover, some solutions in the main program

imply that the moving point in the function has to be decreased (line 05 and return (p + 1)

in line 09).

Since each partition [k] of N can be represented by an ordered one, then the algorithm can be

limited to this case. In the previous section ordered partitions into m non-negative parts (trailing

zeroes are not truncated) has been considered, so they will be treated as the input data. Therefore,

in the first step a number of non-zero parts (lp) has to be determined. The main idea of the

proposed algorithm consists in decomposition of the generation process in such steps that at each

moment one subset is generated with use of the standard algorithm. Let [k] = [k0, k1,..., km-1] be

an ordered partition of N into m non-zero parts. Then to generate m subsets of cardinalities k0,

m-1. In general, in the lth step, one generates kl-element subsets of Nl-element set, where l = 1,

2,..., m-1. Let us consider a partition [k] = [3, 2, 2] generated by the previous algorithm. So one

starts with two-element subsets of a set with seven elements 0, 1,..., 6. Of course, there are 21

subsets, {0,1}, {0,2},..., {0, 6}, {1,2},..., {4, 6}, {5,6}, and in the next steps the five-element

sets will be considered: {2, 3, 4, 5, 6}, {1, 3, 4, 5, 6},..., {1, 2, 3, 4, 5}, {0, 3, 4, 5, 6},..., {0, 1,

2, 3, 5}, {0, 1, 2, 3, 4}. For each set {a0, a1,..., a4} ten two-element subsets {a0, a1}, {a0, a2},

..., {a0, a4}, {a1, a2}, ..., {a2, a4}, {a3, a4} are generated. So, as the final result, one obtains

decomposition of the set {0, 1,..., 6} into three subsets with cardinalities 3, 2, and 2 (note that

k1,..., km-1 one starts with km-1-element subsets of N = Nm-1, where. and l = 0, 1,...,

W. Florek 47

the smallest numbers "occupy" the last subset at the start). There are 7! (3! 2! 2!) = 5 · 6 · 7 = 210

decompositions; a few of them are presented below:

Note that decompositions are considered as different when subsets are identical but generated in

a different order, e.g. {4, 5, 6}, {2, 3}, {0, 1} and {4, 5, 6}, {0, 1}, {2, 3}.

Generated subsets are converted into spin configurations according with the rule: if j belongs

to the ith subset then a spin projection at jth node is s - l, l = 0, 1,..., m-1 and m = 2s + 1, The

listed above decompositions give rise to the following spin configurations (± stand for ±1,

respectively):

48 Combinatorial Structures in Spin Models

Fig. 5. Subsets (configurations) generation

In fact, to avoid negative and half-integer numbers, the program prints theses numbers in-

creased by s, i.e. 2s - l , l = 0 , 1,..., 2s, what is presented in the second column above for s=1.

The above presented remarks suggest that, first of all, there should be arrays containing

generation parameters (k, n, a, pp in the declaration of the function "subfun") depending on the

level l and the level counter lc = m - l it self. These parameters are stored in arrays par[m],

NL[m], AA[m], and MP[m], where AA is in fact a two-index arrays since each row AA[lc] contains

a par[lc]-element subset. However, the procedure "subfun" always works with a set {0, 1, ...,

NL[lc] - 1}, whereas the actual elements may be different. In the above presented example this

procedure generates at first two-element subsets of the set {2,..., 6}, next of the set {1, 3,..., 6}

is considered, and so on till the last case - {0, 1,..., 4}. Therefore, it is necessary to introduce a

two-dimensional array containing actual elements (E) of the set in a question. The array par is

a part of input data and the array NL is determined at the start of a procedure. The other arrays

W. Florek 49

(AA, MP, E) are initialized and then modified during the generation process with use of a working

array sec[N] containing sectioning points (it will described in more details below). The

conversion from subsets to spin configurations is done by the formula

It should be read as follows:

1. For each level i (related to spin projection i - s) relative indices of nodes are stored in a

row AA[i],

2. The ith row of the array E contains absolute, i.e. in the range 0,..., N - 1, indices of these

nodes;

3. At these nodes spin projections have the value i - s, so the appropriate elements of the

array CONF equal i.

Fig. 6. Initialization and generation of the first configuration

The algorithm starts with calculation of elements NL[j] as

and the initialization of AA and E in such a way, that the first decomposition into subsets is

(i = 0, 1 , , . . . , l p < m)

50 Combinatorial Structures in Spin Models

what corresponds to the following configuration

printed as

It is realized by the following starting values of E and AA (the ith rows are presented):

(elements denoted by an asterisk "*" are irrelevant and they need not to be initialized).

The array MP containing "moving points" is initialized if and only if there are more than one

part. The procedure works mainly at the level lc = 1, i.e. it generates par[l]-element subsets of

NL[l]-element set. Of course, at the same moment it generates par[0]-element subset of NL[0]-

element set, since par[0] = NL[0]. After generation of the next subset by the function "subfun"

the array AE has to be modified. It is done for all levels from k = lc to 1 with the use of auxiliary

array sec[N] constructed for each k as

and

(note that the element AA[k, par[k]] is not determined, but, if one prefers, the array sec may not

be introduced). Elements of AE are substituted consecutively, what is controlled by a variable l

(lines 24-30). For a given k elements of AE at the level k - 1 are replaced by elements not used

at the kth level. To illustrate this part of the proposed procedure let us consider the previously

discussed partition [3,2,2] at the moment when the level counter lc = 2 (for lc = 1 modifications

of arrays are less visible). This value is reached when every tenth configurations is generated

(since (5!/2! 3!) = 10). For example the 110th configurations is (0 2 0 0 1 1 2) (see also the

above presented example). The MPCHECK module, discussed below, leads switching to lc = 2

so the actual parameters of the procedure "subfun" are as follows:

Since the second element of A A [2] has reached the limit N - 1 = 6 then the next generated subset

is

and the moving point is changed to MP[2] = 1. The arrays AE, AA, and MP have to be modified

for k = 2, 1. At the first case the sectioning points are 0, 2, 3, 7 (the last three are stored in the

W. Florek 51

Fig. 7. Generation of the consecutive configurations

array sec) and l is set to 0. The following subsets are considered (see lines 25, 28, and 29): {0,1},

Ø, and {4, 5, 6}. Since the pair {2, 3} is assigned to the last subset then the available elements for

the next subset are 0,1, 4, 5, 6 and the row AA[1] is changed from [3,4] to [0, 1] (line 32). At the

same moment the moving point MP[1] is again set to par[1] = 2 (line 33). Now the same

52 Combinatorial Structures in Spin Models

procedure is carried out for k = 1. Since the first two elements (AA[1] = [0, 1]) are reserved for

the subset labeled by 1 then the last three (4, 5, 6) will be available for the subset labeled by 0.

After this modifications one obtains:

AE[0] = [4, 5, 6], AE[l] = [0, 1, 4, 5, 6], AE[2] = [0, 1, 2, 3, 4, 5, 6] ;

AA[0] = [0 ,1 ,2] , AA[1] = [0,1], AA[2] =[2,3] .

According with (1) the generated configuration is

|0, 0, + , + , - , - , - > or 1 1 2 2 0 0 0.

The next call to "subfun" changes AA[1] to [0, 2], so the sectioning points are 0, 2, and 5.

Therefore, the available elements in AE[0] are those indexed by 1, 3, and 4 in AE[1], so AE[0]

= [1, 5, 6] and the generated configuration is

|0, - , + , + , 0 , - , - > o r l 0 2 2 1 0 0.

The last part of the proposed procedure is devoted to control the current level. The main rule

is that after generation at the level lc > 1 the next configuration is generated at the first level (line

36). If lc - 1 then some conditions are checked to decide whether all configurations at lc = 1 have

been generated. The first condition is MP[lc] > 1 since MP[lc] = 1 (line 38) means that the end

might be reached. It is checked by the next condition which is not satisfied if the last element in

the row AA[lc] is equal (line 39) NL[lc] - 1 (cf. the standard version of the procedure "subfun"

in [3, 4]. In these cases the function "subfun" is called (the case A in the flow chart in Fig. 5). If

all subsets at the level lc have been generated then lc is increased and the same conditions are

checked (line 40 and 41 and the case B in Fig. 5), unless lc > lp, i.e. all levels have reached their

limits (case C in the flow chart in Fig. 5).

A number of generated decompositions (configurations) is given by a polynomial coefficient

so it is very large even for small N. Moreover, the main purpose of the presented

programs is applications to mesoscopic systems with

have been performed in such cases. In the test version of the algorithm the conversion (1) and

printing blocks are removed. The results obtained on the Pentium 300 MHz machine are

presented in Table II. The timings are calculated as mean values of several millions runs for N

= 6 and thousands for N = 18. In addition, the partition [8, 8, 8] of N = 24 is also tested:

9,465,511,770 configurations are generated in about four hours what results in speed about 650

thousands configurations per second. In general, time necessaiy to generate one configuration

increase nearly linearly with increasing N. It is confirmed by test runs for N= 100, where about

250 thousands configurations are generated in one second.

4. FINAL REMARKS

The combinatorial algorithms, presented in this paper, seem to work quite efficiently even for

quite large values of N and m. However, both of them are limited by the "combinatorial

explosion". It especially concerns the generation of decompositions into subsets (interpreted as

magnetic configurations), since polynomial coefficients grow very rapidly. For example, there

are more than 5 · 1012 configurations corresponding to the partition [10 10 10] and their

generation will take more than four months (on the Pentium 300 MHz PC). Moreover, to analyze

Therefore, the test runs and timings

W. Florek 53

the ground state of an antiferromagnetic system consisting of N = 30 spins s = 1 one should

consider all (non-ordered) partitions [k0, k1, k2] with k0 = k1[1]. Furthermore, this step is only the

beginning of a long process: configurations have to be stored and decomposed into orbits, matrix

elements of operator matrices have to be determined and eigenproblems solved. On the other

hand, systems with s = 1 and N 20 lead to several millions configurations for each partition

(133,024,320 for [7 7 6]), so the generation process takes less than five minutes (assuming

0.5 · 106 configurations per second). Each configuration |m0, m1,..., mN-1) can be stored as a

number i.e. a configuration is considered as a number written in the

base (2s + 1). In the presented example, N = 20 and s = 1 , the maximal value of a equals

320 - 1 = 3,486,784,400 <2 3 2 - 1, so one needs four bytes per configurations, what results in

more than 500 MB for the partition [7 7 6]. It is a very large number, but all configurations can

be stored on a hard disk used in PC's. It seems, however, that the reasonable limit is N = 18,

where number of configurations is about seven times smaller (e.g. 17,153,136 for [6 6 6]). Larger

spin values decrease this limit: a number of configurations reaches 15 · 106 for N = 15 when

s = 3/2 and so on, but 415 < 2 so again four bytes is enough to store one configuration. Such

limits allow to investigate most of mesoscopic magnetic rings [6], what is the main purpose of

the presented algorithms.

Table II. Number of configurations NC and generation speed (configurations per second)

for N = 6 and N = 18

The problem of generation all decompositions of N-element set into subsets with cardinalities

given by an ordered partition [k0 k1, ... km-1] has been solved in such a way that there is no

recurrence, since sometimes it is difficult to realize recurrent algorithms. It should be underlined

that in the proposed procedure all k1-element subsets of NL[l]-element subset are generated many

times (strictly speaking - times). To avoid this feature one can store all

54 Combinatorial Structures in Spin Models

decompositions of NL[l]-element set into k0- and k1-element subsets and then use stored results
for the further generations at levels lc > 1. However, it give rise to a problem of efficient storing
and recalling of configurations. Moreover, the actual form of the algorithm is more flexible: the
array AE may contain any elements (for example, an element AE[i][j] can be interpreted as an
index of an array with actual objects in question) or the generation can be limited to subsets with
given properties. It is worth noting that consecutively generated decompositions may differ
considerably, e.g. {0 2 3} {4 5} {1 6} and {4 5 6} {0 1} {2 3} in the example presented in the
main text. It seems interesting to construct an algorithm which generates decompositions with the
minimal difference, when consecutive decompositions differ only by one interchange of two
elements between two subsets, i.e. a decomposition in a form

{...} ...{...a...} ... {...b...} ... {...}
is always followed by a decomposition obtained by swapping a and b only:

{...} ... {...b...} ... {...a...} ... {...}.
Such algorithm is known for m = 2 [3,4], i.e. for generation of k-element subsets.

Acknowledgments
This work is supported by the Polish State Committee for Scientific Research (KBN) within the project No.

8 T11F 027 16. The author is indebted to Prof. G. Kamieniarz for inspiring and valuable discussions. Some

of numerical calculations were carried out on SGI Power Challenge in the Supercomputing and Networking

Center in Poznań.

References
[1] S. Bucikiewicz, W. Florek, CMST, this volume.
[2] G. Kamieniarz, R. Matysiak, W. Florek, S. Walcerz, J. Magn. Magn. Mater., 203, 271 (1999).
[3] E. N. Reingold, J. Nivergelt, N. Deo, Combinatorial Algorithms. Theory and Practice, Prentice Hall,

Engelwood Cliffs NJ, 1977.
[4] W. Lipski, Combinatorics for Programmers. Polish Sci. Publ. (PWN), Warsaw, 1982 [in Polish].
[5] A. Kerber, Algebraic Combinatorics via Finite Group Actions. B I Wissenshaftsverlag, Mannheim-

Wien-Zürich, 1991.
[6] D. Gatteschi, A. Caneschi, L. Pardi, R. Sessoli, Science, 265, 1054 (1994); A. Lascialfari,

D. Gatteschi, A. Cornia, U. Balucani, M. G. Pini, A. Rettori, Phys. Rev. B, 57, 1115 (1998);
A. Caneschi, D. Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, A. Cornia, M. A. Novak,
C. Paulsen, W. Wernsdorfer, J. Magn. Magn. Mater., 200, 182 (1999).

