
C O M P U T A T I O N A L M E T H O D S I N SCIENCE A N D T E C H N O L O G Y 5 , 3 9 - 5 2 ( 1 9 9 9 ) 

THREE LOWEST 3IIg AND THREE LOWEST 3IIu STATES 
OF THE HYDROGEN MOLECULE 

1 Max Planck Institute for Astrophysics, 85470 Garching, Germany and 
Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland 

2 Quantum Chemistry Group, Department of Chemistry A. Mickiewicz University, 
Grunwaldzka 6,60-780 Poznań, Poland and 

Institute of Bioorganic Chemistry, Polish Academy of Sciences 
Noskowskiego 12/14, 61-704 Poznań, Poland 

A b s t r a c t : Calculations of the Born-Oppenheimer (BO) potential energy curves and adiabatic corrections 
for three lowest 3 I I g and three lowest 3IIu, states of the hydrogen molecule have been performed using 
explicitly correlated wavefunctions in elliptic coordinates. The accuracy of the results obtained has been 
discussed. The adiabatic corrections as functions of R possess complex structure with one or more maxima 
illustrating changes in the character of the wavefunctions. It is shown that for the k state the adiabatic curve 
has huge maximum of the order of 50 000 c m - 1 . 

1. INTRODUCTION 

[7-10]. 
In the present work we have computed adiabatic potential energy curves for three lowest 3IIu 

states (c, d, k) and for three lowest 3IIg states (i, r, w). Work on some higher states is in progress. 
The computed energies have been used to calculate the rovibrational levels, the results of these 
calculations will be published later. Recently, Staszewska and Wolniewicz have calculated BO 
energies and adiabatic corrections for five states considered, i. e. c, d and k 3IIu and i and r 3 II g 

For the 3II states of the hydrogen molecule very few accurate theoretical results are available. 
Only for the lowest states, c 3IIu and i 3IIg, accurate potential energy curves have been computed 
in the Born-Oppenheimer (BO) approximation [1]. The agreement with experiment of 
the computed energies was, however, not satisfactory. The discrepancy, larger for the 
was interpreted as caused by the Born-Oppenheimer approximation. Only for the 

state, 
state 

the adiabatic corrections have been computed [2]. The theoretical potentials have also been used 
to interpret various experimental results (see, e. g., Ref. [3,4] and therefore it would be desirable 
to increase their accuracy, especially by computing the adiabatic corrections. The potential energy 
for the state has a maximum resulting from an avoided crossing, and there are indications 
that the electronic wavefunction changes character at large vibrational amplitudes [3], Hence one 
may expect that the adiabatic correction to the BO potential is large in this region. Avoided 
crossings are also to be expected for higher states. Wolniewicz and Dressier have recently shown 
[6] that for some states of the hydrogen molecule avoided crossings result in huge maxima 
of the adiabatic corrections. It has been shown that such effects appear also for the pairs of triplet 
states naimly for the 3s and 3d as well as for the 4s and 4d states of the hydrogen molecule 
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states of the hydrogen molecule [5], Our results can serve as independent verification of then-

data. In the case of the w 3 II g state our energies seem to be the first accurate potential curve. 

Throughout this paper the energy is given in Hartree, the dissociation energy and all adiabatic 

corrections in cm - 1 (1 Hartree = 219474.631 cm - 1), the internuclear distance in Bohr. For 

the nuclear masses we used Mp = 1836.1527 me and Md = 3670.4831 me. 

2. ADIABATIC POTENTIAL ENERGY CURVES 

The standard nonrelativistic hamiltonian was used to calculate the Born-Oppenheimer 

energies. The electronic wavefunction was assumed in the form of the generalized James-

Coolidge function [11]: 

(1) 

(2) 

where the basis functions are expressed in elliptic coordinates and η as 

where α, β, are variational parameters; ni, ki, mi, li and μi are integers, and r12 and R denote 

the intereleetronic and internuclear distances, respectively. 

The upper limits imposed on the powers of the variables were: 

6. The form of the wavefunction allows us to use both even and odd powers 

of η for g as well as for u states. We have found, however, that this creates problems with linearly 

dependent terms. Therefore only even powers of η have been used for the u states and odd 

powers of η for the g states. Several tests have been made showing that when e. g. terms with 

even powers of η have been added to the final wavefunction for a g state practically no 

improvement of the energy could be obtained. 

The above limits generated wavefunctions with many linearly dependent terms. Therefore for 

each state a selection of terms had to be earned out. The procedure which has been used for 

lower states, was as follows: For three internuclear distances, usually R = 2, 4, 8 Bohr, 

the exponents have been optimized in an arbitrarily chosen short expansion ( 

Next all terms have been tested for the three internuclear distances using a relatively large 

threshold for rejecting terms. In this way a somewhat longer expansion has been obtained in 

which again the optimization of exponents has been performed and followed by selection of all 

terms not included in the wavefunction. In the final selection the threshold was 0.002 cm 1. The 

wavefunction selected in this way was used also for smaller and larger internuclear separations. 

Usually, however, for small and large distances some linearly dependent terms had to be rejected 

and new terms, not important for the intermediate R values, had to be introduced. This procedure 

failed, however, for higher states. The wavefunction for these states drastically changes its 

character with the change of R, and terms selected at large R create only numerical difficulties 

at small distances and vice versa. For some states the difficulties were quite serious, e. g., for 

40 terms or less). 
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the l s 4 d π (r) state the wavefunction selected at R = 2 was found to be not applicable at R = 1.95. 

Hence, for higher states, the above procedure had to be modified and independent wavefunctions 

had to be selected for several internuclear distances. For each internuclear distance the exponents 

in the wavefunction have been optimized. 

The electronic wavefunctions have been used to calculate the adiabatic corrections, given as 

expectation values of the operator 

(3) 

(4) 

(5) 

(6) 

where 

H1' is the operator of the relative kinetic energy of the nuclei, H2' is the correction to 

the kinetic energy of the electrons, H 3 ' is the mass polarization correction and μ denotes 

the reduced mass of the nuclei. The explicit expression for H1' (R) in terms of elliptic coordinates 

is given in Ref. [ 12]. In the present work essentially the same method of evaluation of the matrix 

elements of H1'(R) as in that reference is employed. While computing the derivatives of 

the wavefunction with respect to R, the R-dependence of the nonlinear variational parameters 

was ignored. This assumption simplifies the computation considerably and does not introduce 

significant errors, provided that the wavefunction is fairly accurate i. e. the expansion (1) is rather 

long. 

From parallel tests of terms at R = 2,4, 8 a 185-term wavefunction has been constructed. For 

R= 1.5 additional tests have been made to check the accuracy of the wavefunction in this region. 

The additionally selected terms introduced, however, only negligible improvement (0.02 cm-1 ), 

and therefore they were not included in the final computation. The 185-term wavefunction has 

been used for 1.0 R 7.5. For R = 8 in the course of optimization of exponents linear 

dependencies have been encountered and the expansion had to be shortened to 168 terms. Further 

reduction of the expansion length was necessary for R = 12 (142 terms) and R = 15 (109 terms). 

The results are shown in Table I where R and E denote the internuclear distance and the BO 

energy in atomic units (Bohr and Hartree, respectively). The derivative dE/dR has been computed 

from the virial theorem. D denotes the dissociation energy and is given in cm - 1 . <Hi> are 

the adiabatic corrections defined in Eqs 3-6, and <H'> is their sum, all in cm - 1 . For each value 

of the internuclear distance the exponents in the wavefunction have been optimized. 

In comparison with the previous results the energy has been lowered by < 1 cm - 1 . For 

the minimum of the BO energy (at R = 1.960) the lowering amounts to 0.5 cm - 1 . As compared 
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13.2 cm-1. The computed adiabatic corrections differ from those calculated by Staszewska and 

Wolniewicz by no more than 0.01 cm - 1 and around equilibrium this difference amounts to 

0.003 cm -1. 

with the recent results by Staszewska and Wolniewicz [5] our BO energies are higher than theirs 

by no more than 0.1 cm -1 and at the equilibrium (R= 1.96 Bohr) the difference is 0.04 cm -1. 

The adiabatic correction has a minimum at R 3 and increases the binding energy De by 

Parallel tests have been started for R = 1.5,2,4 and 8. It has been found, however, that terms 

important for short distances introduced linear dependencies at R = 8, and therefore for the latter 

distance independent tests have been made. This resulted in a 191-term expansion for smaller 

distances and 220-term expansion for larger ones. The 220-term wavefunction, selected at R = 8, 

even at R = 3 gave an energy that was still 0.001 cm-1 lower than the 191-term expansion. There-

been shortened to 201 terms for R = 12 and 142 terms for R = 15. The results are shown in 

Table II. The minimum of the Born-Oppenheimer energy is at R = 1.9833. The BO energies for 

the d state calculated by Staszewska and Wolniewicz are lower than our energies by less than 

cm -1 for larger R. 

the interaction with the k state. The adiabatic correction increases the binding by 7 cm -1. 

R < 1.5 Bohr, less than 0.1 cm for 1 . 5 < R < 8.0 Bohr and few tenths of 0.22 cm -1 for 1.0 

fore the latter has been used for 1.4 2.9. For R 1.3 it has been shortened to avoid linear 

dependencies. The 220-term expansion has been used for 3.0 11.0 and for larger R it has 

Parallel tests of terms in the wavefunction have been made for R = 2, 4 and 8 resulting in 

a 222-term expansion. Already for R = 1.9 one term in this wavefunction turned out to be linearly 

dependent and had to be rejected. For the same reason more terms have been removed for smaller 

distances. At R = 1.3 additional tests have been performed and the terms found to be important 

have been introduced also for neighboring distances. In consequence in the region of small R the 

wavefunction had from 220 terms (R = 1.7) to 103 terms (R = 1.0). Similarly as for small 

distances the 222-term expansion was found to contain superflous terms for R > 10 which had 

to be rejected. The calculated energy curve is lower than that obtained by Staszewska and 

values of the energy and of the adiabatic corrections are listed in Table III. In Fig. 1 we show 

the energies of the three 3IIu states computed in the BO approximation, and in Fig. 2 the adiabatic 

corrections <H'> for these states. 

Wolniewicz for 1.2 1.7 and 2.4 R < 2.9 otherwise it is higher than in [5], The computed 

Similarly as for the two lower states the BO energy has a minimum at R 2 bohr. For this 

state it is located at R = 1.991. At R = 5.67 the energy reaches a maximum but the state is still 

bound by 185.89 cm -1. At R = 6.96 a second minimum occurs which is 397.80 cm -1 deep. 

The adiabatic correction has a minimum at R 3.4, i. e. in the same region as in the c state. 

Here, however, it has also a not very high maximum at R 7.5 which is probably due to 
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The adiabatic correction <H'> has 3 maxima: a very sharp and high peak at R = 2.86 and two 
lower maxima at R = 5.2 and 7.5, respectively. The maximum at R = 7.5 indicates a strong 
interaction with the d state which also has a maximum of <H'> in the same region. The other two 
maxima are due to interaction with higher states. 

Fig. 1. Clamped nuclei energies for 
the c (graph A), d (graph B), k (graph 
C) states of the hydrogen molecule 

Fig. 2. Adiabatic corrections for the c 
(graph A), d (graph B), k (graph C) 
states of the hydrogen molecule 

To check the reliability of the huge value of <H'> at R = 2.86 the expansion has been 
shortened from 222 to 117 terms. Without reoptimizing the exponents this resulted in 
D = 12823.734 cm - 1 and <H'> = 50329 cm - 1 . Optimization of the exponents gave 
12823.857 cm - 1 and <H'> = 57268 cm - 1 . This shows that the computed value of <H'> is not 
very accurate, but it also very strongly indicates that the huge peak is not an artifact. 

The maxima of <H'> occur in the region where the wavefunction rapidly changes its 
character. It is therefore not surprising, as we have found for some other states (to be published), 
that the values of <H'> at their maxima strongly depend on whether they are computed with 
a wavefunction selected at a smaller or at larger internuclear distance. For the state under 
consideration a single expansion resulting from tests at R = 2, 4, 8 has been used, and therefore 
there seems to be no reason to suspect that a differently selected wavefunction would produce 
significantly different results. Independent verification of the behavior of the adiabatic effects for 
the k state is given in [5]. 
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The previously computed wavefunction for this state [1] has been used as the starting point. 

Parallel tests of additional terms have been made at R = 2 and R = 4.5. They resulted in 

been made at R = 10. It produced a 157-term wavefunction that even for R = 5.5 gave a lower 

energy than the 177-term expansion. For R < 1.6 the number of terms in the 177-term 

wavefunction had to be reduced to 140-137 terms to remove the linearly dependent terms, and 

similarly the 157-term wavefunction for R= 12 and 15 has been shortened to 133 and 102 terms, 

respectively. The results of the computations are shown in Table IV. The improvement of 

the energy over the previous results amounts to 0.75 cm -1 at the equilibrium and reaches 

a maximum of about 2.1 cm -1 at R = 4. Our BO energy curve for the i state is lower than that 

is higher by 0.01 cm -1. 

The adiabatic correction <H'(R)> has a minimum at R = 3.3, and a maximum at R = 4.2 cm -1. 

This is very close to the maximum of the Born-Oppenheimer energy which is located at R = 4.35. 

The differences in the adiabatic corrections calculated by Staszewska and Wolniewicz [5] and 

by us are not higher than 0.01 cm - 1 

a 177-term wavefunction that has been used for 1.6 5.0. Independent selection of terms has 

obtained by Staszewska and Wolniewicz [5] for 1.6 3.6 by at least 0.01 cm and otherwise 

Attempts to produce a single expansions from wavefunctions selected at R = 2, 4 and 8 have 

failed. A 171-term expansion constructed at R = 2 has been used for 2.0 2.6. For smaller 

distances some linearly dependent terms have been removed, but new terms selected at R = 1.2 

have been added. For 2.7 10.0 a 202 term expansion selected at R = 4 and 8 has been 

employed. For R =12 and 15 the expansion has been shortened to 180 and 183 terms, 

respectively. The results are listed in Table V. The calculated in this work energy curve for the r 

state is higher than that of [5] by 0.06 cm -1 for the equilibrium and by few tenths of cm -1 for 

larger R. 

<H'(R)> for the r state has a minimum at R = 3.2 and a maximum at R = 4.1. The latter is 

a clear effect of an avoided crossing with a repulsive potential resulting from the interaction of 

Independent tests of terms have been made at R = 2, 4, 8 and 138-, 218- and 205-term 

wavefunctions have been selected, respectively. Additional tests have been carried out for both 

smaller and larger separations. At R = 1.3 a 99-term wavefunction has been selected and used for 

1.2 1.5. For R = 1.1, however, 4 terms had to be removed from this expansion. 

relative to the maximum at R 8 amounts to only 0.01 cm -1. It is difficult to judge whether 

the minimum is real. We are inclined to believe that it is since a similar minimum appears also 

in the higher w state (see below). 

n = 1 and n = 2 hydrogen atoms. A very flat minimum of <H'> appears also at R 7. Its depth, 
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Table I. Clamped nuclei energies and adiabatic corrections for the state of the hydrogen molecule 
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Table II. Clamped nuclei energies and adiabatic corrections for the d 3[]u state of the hydrogen molecule 



Table III. Clamped nuclei energies and adiabatic corrections for the k 3IIu state of the hydrogen molecule 
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Table IV. Clamped nuclei energies and adiabatic corrections for the i 3IIg state of the hydrogen molecule 
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Table III. Clamped nuclei energies and adiabatic corrections for the r 3IIg state of the hydrogen molecule 



Table VI. Clamped nuclei energies and adiabatic corrections for the state of the hydrogen molecule 
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At R = 12 a 182-term wavefunction has been constructed but already at R = 13 the expansion had 
to be shortened to 110 terms, and to 88 terms for R = 25. The results are shown in Table VI. The 
BO energy has a minimum at R = 2.0, a maximum at R = 5.77, again a minimum at R = 12.5, 
which is located about 0.9 cm"1 above the dissociation limit, and a small maximum at R = 16. In 

Fig. 4. Clamped nuclei energies 
for the i (graph A), r (graph B), w 
(graph C) states of the hydrogen 
molecule 

Fig. 5. Adiabatic corrections for 
the i (graph A), r (graph B), w 
(graph C) states of the hydrogen 
molecule 

The adiabatic correction has the usual minimum for the 1snp and 1 snd states located at 
the internuclear separation somewhat larger than R = 3. In the w state, under consideration, 
the minimum appears at R = 3.2. The maximum at R = 4, similarly as the maxima in this region 
for the i and r states, is due to an avoided crossing with a repulsive diabatic curve. The very small 
maximum at R = 9 seems to indicate an avoided crossing with the r state which has a maximum 
of <H'> at R = 8. The maximum at R = 5.5 arises from interaction with a higher state. 

Fig. 3 we show the BO energies of the three 
these states. 

states, and in Fig. 4 the adiabatic corrections for 

where L and denote the quantum numbers of the united atom angular 
momentum and of the projection of the electronic angular momentum on the molecular axis, 
respectively. For the states this contribution does not vanish and therefore for the i, r and 

The asymptotic form of the angular contribution to the adiabatic correction H1' for R 0 is 
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w states <H1
' > for small R has much larger values than for the c, d and k states which are of 

the type. 
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