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Abstract: A concise introduction to the mathematical theory of knots is presented. Definitions of basic no-
tions are explained. Then, knots are considered as material objects and the question concerning their optimal 
conformations is posed. A numerical algorithm searching for the ideal knots is described. A few results 
obtained with its help are presented. 

Let us start with a few formal definitions of the basic notions of the topological theory of 

knots [1], 

K n o t 

Knot is a self-avoiding, closed curve in 3D space. 

For mathematicians, knots are thus tied on something immaterial - an inifnitely thin thread, 

neccesserily closed at the end of the tying procedure. The length L of the thread is of no signi-

ficance - a knot of any shape can be scaled up or down without any hindrance. 

Physicists, however, imagine knots as material objects. If a knot is tied on a string or a tube 

(let us remember: neccesserily closed at the end of the tying procedure), the condition of self-

-avoidance found within the formal definition is surely fulfilled. Figure 1 shows a knot tied on 

a tube. If the diameter D of the tube is kept fixed, the knot cannot be scaled down as much as one 

wishes. There is a certain, minimal size of the knot and connected with it minimal length L at 

which the finite diameter of the tube will create problems. We shall return to the problem later. 

The 3D self-avoiding curve forming a given knot can be deformed. From the topologial point of 

view all deformations, during which the condition of self-avoidance has been not violated, do not 

matter; under such deformations the knot changes its conformation but keeps identity. This is 

stated in the second definition: 

1. INTRODUCTION 

Fig. 1. A knot tied on a tube of a finite thickness 
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10 In Search of Ideal Knots 

Knot type 

Two knots are of the same type if they can be transformed into each other via deformations 

during which the knots remain self-avoiding. 

The 3-dimensional transformations which fulfill the criterion of keeping a knot selfavoiding 

are called ambient isotopy. Figure 2 shows a sequence of frames taken from a simulation of a 

continuous deformation process in which the knot shown in the first figure has been transformed 

into a circle. This numerical experiment proves that the knot type of the initial knot K1 is identical 

with the knot type represented by the final knot K2. 

Fig. 2. A continuous deformation process during which the knot remains selfavoiding. 
Its existence proves that knots K1 and K2 are of the same type 

Most often knots cannot be transformed into each other - they are of a different knot types. 

How many different knot types are there? The answer is: infinitely many. Figure 3 presents three 

most simple knot types. 

As easy to check, tying two nontrivial knots on the same piece of rope creates a new knot, 

which is not simpler than the factor knots; they never anihilate each other to result in a trivial 

knot. Given a knot, one should check, if it is not composed of two or more simpler knots. We 

need here another definition: 

Fig. 3. The simplest knot types 
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Compos i te knots 

Knots, which can be seen as two nontrivial knots connected but with two pieces of a rope are 

called composite. 

Fig. 4. An example of a composite knot. As shown in the ight part pf the figure the knot can be 
seen as a composition of two nontrivial knots: a trefoil knot and a figure eight knot 

This brings us to the definition of: 

Prime knots 

Knots, which are not a composition of any two nontrivial knot, are called prime. 

Having defined prime knots we may ask a basic and by no means simple question: 

How to classify and tabulate prime knots? 

Looking at a knot from a given direction, or projecting it on a plane, we see it as a two-

-dimensional curve, which (except the trivial knot) crosses itself in a few points. 

Deforming the knot via ambient isotopy transformations (i.e. via transformations during which 

the curve remains self-avoiding in the 3-dimensinal space) and looking at it from different 

directions we shall find that the number of crossings changes. It cannot be reduced though below 

a certain, well defined for each knot minimal number of crossings. To illustrate this, we repeat 

below Figure 2 indicating this time how during the ambient isotopy transformation performed on 

the knot its crossing number becomes reduced from 8 to 0. 

Fig. 5. In the projection on a plane the knot is seen 
as a 2-dimensional curve 
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Crossing number (CN) 

CN - number of crossings seen in a projection of a knot onto a plane. 

CN = 3 CN = 2 CN = 1 CN = 0 

Fig. 6. A few frames from a transformation via which the number of crossings 
seen a knot has been reduced to 0 

Minimal crossing number (MCN) 

MCN - the minimal number of crossings possible to be seen in a projection of a knot onto a 

Knots can be segregated into classes according to their minimal crossing number. This is the 

basic criterion of the tabulation of knots. Its fascinating history is described by Jozef Przytycki 

[2], one of a few Polish mathematicians, whose names are found in all textbooks on the knot 

theory. Let me cite here a few essential names and dates. 

1880 - Reverend Thomas Penyngton Kirkman - the first attempt to tabulate knots. 

1877 - Peter Guthrie Tait (a Scottish physicist) - tabulation of all alternating (see below) 

knots up to MCN = 10. 

1899 - Charles Newton Little - tabulation of all prime knots (including nonalternating, see 

below) up to MCN = 10. His table was discovered to contain one duplication (see 

Perko, below). An attempt to tabulate knots with MCN = 11. It was found later that the 

table contained 11 omissions and one duplication. 

1917 - Mary G. Haseman - a complete table of all amphicheiral (see below) knots with up to 

1927 - J. Alexander and Briggs - the first rigorous proof that most of the tabulated knots with 

up to MCN = 9 were distinct. 

1932 - Kurt Reidemeister - finishing the work initiated by Alexander and Briggs. 

1969 - John H. Conway - invention of a new notation for knots and based on it tabulation of 

plane 

MCN = 12. 

all prime knots up to MCN = 11, not without errors, however. 
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1974 - Kenneth A. Perko (a New York lawyer) - discovery of one duplication in the Little 

table and four omissions in the Conway table. 

1978 - Alain Caudron - the first correct table of all prime knots up to MCN = 1 1 . 

1983 - Hugh Dowker - invention of another notation for knots. 

Morwen Thistlethwait - a numerical algorithm generating knots and created with it 

tabulation of all prime knots up to MCN =13. 

The table below presents the numbers N of prime knots tabulated by Thislethwait found in their 

classes with MCN from 0 to 13. 

Table I. Number N of prime knots versus their minimal crossing number 

MCN 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

N 1 0 0 1 1 2 3 7 21 49 165 552 2176 9988 

As seen in the table, number N of knots grows rapidly with MCN. How rapidly? It was shown 

in 1987 by Claus Ernst and Dewitt Sumners (who used results obtained by Kauffman, Murasugi 

and Thistlethwait) that N is not smaller than: 

(2MCN-2-1)/3. 

That classes of prime knots with MCN - 1 and 2 are empty one can check on one's own. See 

Figure 7. 

Fig. 7. Examples of knots with CN = 1 and CN = 2. It is obvious that by a simple manipulation 
the crossings can be removed 

Talking about different knots is possible only if one is able to name them. Such names as 

"trivial", "trefoil" or "figure eight" are customary, but most often we use one of a few more con-

cise notations. For instance, according to one of the notations, knots are identified by two num-

bers: nm. 

n - describes here the class within which the knot has been tabulated, i. e. its minimal crossing 

number, thus, n = MCN, 

m - describes position of the knot within the class specified by n in table set up by Rolfsen. 

In this notation trivial knot is described as 01, trefoil knot as 31 and figure eight knot as 41. 
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the 31 knot, its mirror image 

and ask the question: 

Are the two knots ambient isotopic? 

Answer, not easy to find though, is: 

No. 

For obvious reasons in the table of knots only one of the knots is tabulated. Similarity, let us take 

the 41 knot, its mirror image 

and ask the same: 

Are the two knots ambient isotopic? 

Answer, possible to find by a simple manipulation of the string on which the knot has been tied 

is this time: 

Yes. 

We say that 31 knot is cheiral (or chiral) and 41 knot is amphicheiral (or achiral). 

Looking at a particular conformation of a knot from different directions one can find out that 

the number of crossings changes. (If the knot conformation is a suitable one, one may find for it 

a direction from which the minimal crossing number is seen). One may ask, which is the average 

number of crossings. 

Cheiral and amphicheiral (chiral and achiral) knots 

Let us take 

In Search of Ideal Knots 
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Fig. 8. A map of the crossing number for the 111 knot 

A v e r a g e crossing n u m b e r (ACN) 

ACN - the average number of crossings seen within the knot from all possible directions. 

The formula presented above is of not much use. How to implement it for a knot K given e. g. 

Analysing crossings seen in a knot K from a given direction one may get into more detailed 

analysis. First, let us orient it e. g. by imagining that some objects (1-dimensional cars, for 

instance) move along it (using K as a one way street). Looking at a knot from the given direction 

we shall see the crossings as bridges. If the drivers moving on the bridges see the cars on the 

street below heading left, the crossing is labeled with +1, otherwise it is labeled - 1 . A sum of the 

absolute values of the labels gives of course the directional crossing number CN; a sum W of the 

signed values of the labels gives another important variable used in the theory of knots: the 

directional writhe or simply the writhe of K [4]. 

The directional writhe is an integer. Its absolute value is not larger then the directional 

crossing number CN. Let us note that a change in the orientation of the knot does not change the 

sign of W. 

As in the case of the crossing number, the directional writhe can be averaged over all possible 

directions. The average is called the writhing number of K or simply its writhe. Below we shall 

denote it by Wr. (Unfortunately, the brief name of the writhing number coincides with the brief 

name of the directional writhe. Which of them is referred to becomes usually clear from the 

context.) Its value can be calculated with the use of an integral similar to that used in the 

calculation of the average crossing number: 

15 

where CN is the crossing number as seen in the projection determined by angles and 

in an analytical form? To calculate ACN one should find first the CN function. It is by no 

means clear, if this is possible at all. Fortunately, ACN can be calculated in a much more smart 

manner, using another double integral [3]: 
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REMARK. There exists an interesting connection of writhe with the Berry phase or the 

Hannay angle, a connection which seems to be not well explored yet. 

2. IDEAL KNOTS 

For a topologist all conformations of a knot are just equivalent. For a physicist, who imagines 

a knot as a material object, different conformations of a knot may be not equivalent. In particular, 

when one considers a knot as tied on a perfectly flexible, but at the same time perfectly hard in 

its circular crossection tube, one may ask a question: 

Which is the tightest conformation of a knot, i.e. which is the conformation of the knot pos-

sible to be tied on the shortest piece of the tube. 

The question was asked by a team of scientists lead by A. Stasiak in a paper published in 

Nature [5], 

To find the "ideal", as they were called by Stasiak, conformations, Vsevolod Katritch used 

the numerical method of the simulated annealing. Using the method, Katritch managed to find 

apparently most tight conformations of a few simple and a few composite knots. 

Stimulated by the work of the Lausanne team I developed SONO (shrink-on-no-overlaps), a 

simple algorithm able to tighten knots tied on a tube [6], 

In the algorithm the knot is discretised: it consists of a number N of equidistant nodes. The 

nodes repel each other with a hard sphere potential of the diameter D. For obvious reasons, the 

neighbouring nodes do not interact. 

a) b) 

Fig. 9. (a) - the discrete representation of the trefoil knot, (b) - the most tight turn 

The idea of the algorithm is as follows: remove all overlaps between the spheres surrounding 

each of the N nodes, having done this - shrink the conformation [7]. Removing the overlaps, one 

must simultaneously keep an eye on the distances between the neighbouring nodes. One may 

imagine that the nodes are kept together by a set of N leashes, all of the same length. The Pascal 

implementation of the SONO is built from a set of procedures. The names of the basic ones 

explain their function: 
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ControlLeashes (CL) 

FindNeighbours (FN) 

RemoveOverlaps (RO). 

3. TESTS OF THE SONO A L G O R I T H M 

One of the most obvious features of any algorithm which searches for the most tight confor-

mation of knots should be its ability to untangle the arbitrarily entangled conformation of the 

trivial knot. (Its most tight conformation - a torus - is obvious). Figure 10. 

The second test was suggested by Moffatt [8]: "It would be interesting to test the algorithm 

on the simpler T 3 , 2 and T 2 , 3 configurations of the trefoil; it is not clear to me, how T 3 , 2 could f low 

to T 2 , 3 through the process described". Figure 11 presents the flow of the (3,2) torus knot towards 

its most tight form. Note the transition in the symmetry of the conformation during its tightening: 

the initial one has a twofold symmetry axis, while the final one the symmetry axis is the threefold 

Fig. 10. Evolution of the conformation of the initially entangled trivial knot under the action 
of the SONO algorithm. The plot below shows the evolution of the LID, ACN and Wr parameters 
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As mentioned before, tabulation of knots is not a simple problem. In 1974 Kenneth A. Perko, 

a New York lawyer discovered of a duplication in the Little table of knots with 9 crossings. 

SONO algorithm reveals the duplication in a few minutes. Figure 12. 

Searching for the ideal conformation of even very simple knots is not easy. Soon after Ref. 

4. has been published, Katritch and I discovered, that some of the "ideal" conformations shown 

in the paper were not the most tight ones. For instance, the conformation of the 51 knot shown 

in the paper has clearly a fivefold symmetry axis. A simulation performed with the use of the 

SONO algorithm proved that the symmetry becomes broken. Figure 13. 

A much more spectacular example of the symmetry breaking process is shown in Figure 14. 

Here, not only the symmetry becomes broken, but the structure of the knot undergoes a profound 

reconstruction. As discovered in more recent simulations, conformation (f) is not the best one. 

Fig. 11. Evolution of the (3,2) torus knot towards its (2,3) ideal form 

a) b) c) d) e) 

Fig. 12. Induced by the SONO algorithm evolution of knots from the Pairko pair towards 
a single conformation 

The case of the 51 knot proves that during the tightening process knots may enter confor-

mations which are not the ideal one. To get out of such local minima is not easy. SONO algorithm 

is able to do it in some cases, in others - not. The composite knots are apparently the most 

difficult ones. 
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4. RESULTS 

In a close cooperation with the Lausanne group I performed a long series of simulations 

looking for the most tight conformations of all simple knots with up to 9 crossings and some of 

the composite knots. Parameters of the most tight conformations I managed to find are shown in 

Table II. A plot of the average crossing number ACN of the knots versus their length L/D proves 

that the linear correlation between the two parameters suggested in Ref. 5 is but the first appro-

ximation. Most probably the relation has a character of a power law. Figure 16 and Figure 17. 

Fig. 13. The symmetry breaking observed during the tightening of the (2,5) torus knot during 
its tightening forced by the SONO algorithm 

Fig. 14. Symmetry breaking observed in the (2,33) torus knot. The tube on which the knot was tied 
is shown at half of its actual diameter 



20 In Search of Ideal Knots 

Fig. 15. Two tight conformations of the (2,33) torus knot. The conformation shown 
on the right proves to be a better one 

Fig. 16. ACN vs LID for all simple knots with up to 9 crossings 

Fig. 17. ACN vs LID for all simple knots with up to 9 crossings and number of larger knots 
from the family (2, n) of the torus knots 

In contrast to the ACN vs L/D dependence, the linear writhe vs. minimal crossing number 

correlations suggested in Ref. 5 prove to be well supported by may data. Figure 18. The corre-

lations seem to be very interesting and are intensively studied in the cooperation with A. Stasiak. 

Properties of the tight conformations of the composite knots are very interesting as well. For 

instance, their writhe proves to be additive, i. e. the writhe value of the composite knot is, (with 

an unexpected accuracy) equal to the sum of the writhe of the factor knots [9]. 
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5. CONCLUSIONS 

The development of the theory of knots enters a new phase. Within the society of the mathe-

maticians knots were so far interesting to the topologists - now also the geometry, in particular, 

Table II. Parameters of the most tight conformations found with the SONO algorithm 
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Fig. 18. Writhe vs minimal crossing number for a few families of simple knots 

Fig. 19. The writhe of the tight conformations of composite knots versus the sum of the writhe 
of their factor knots 

the differential geometry becomes interested in properties of their various conformations. Within 

the society of the physicist, knots were treated as a tool - most applications were falling into the 

category of "knots in physics". Now, physicists become interested in the knots themselves. As 

a result a new field of research, "the physics of knots", is opened. My work certainly belongs to 

the second category. 
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