
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 3 , 2 5 - 3 7 (1 9 9 7)

DISCRETE-CONTINUOUS SCHEDULING TO MINIMIZE
THE MEAN FLOW TIME

— COMPUTATIONAL EXPERIMENTS

J o a n n a J ó z e f o w s k a *) , M a r e k M i k a *) , R a f a ł R ó ż y c k i *) ,

G r z e g o r z W a l i g ó r a *) , J a n W ę g l a r z *) * *)

*) Inst i tute of Computing Science, Poznań University of Technology, Piotrowo 3a,
60-965 Poznań, Poland, e-mail: office_ics@sol.put.poznan.pl

**) Poznań Supercomputing and Networking Centre, Wieniawskiego 17/19, Poznań, Poland

A b s t r a c t

Problems of scheduling nonpreemptable jobs which require simultaneously a machine f rom a
set of parallel, identical machines and a continuous, renewable resource to minimize the mean
flow time are considered. For each job there are known: its processing speed as a continuous,
concave function of a continuous resource allotted at a time and its processing demand. The
problem can be decomposed into two interrelated subproblems: (i) to sequence jobs on
machines, and (ii) to find an optimal (continuous) resource allocation among j o b s already
sequenced. For some special cases the problem can be solved in polynomial time. For the
general case we propose to use heuristic search methods defined on the space of feasible
sequences. Three metaheuristics: Tabu Search, Simulated Annealing and Genetic Algori thm
have been implemented and compared computationally. The computational experiment has
been carried out on a SGI PowerChallenge XL computer with 12 RISC R8000 processors.
Some directions for further research have been pointed out.

1 . P r o b l e m f o r m u l a t i o n

T h e discrete-cont inuous s c h e d u l i n g p r o b l e m i s def ined as f o l l o w s (J ó z e f o w s k a .

W ę g l a r z , 1997) . Cons ider n independent, n o n p r e e m p t a b l e j o b s w h i c h s i m u l t a n e o u s l y

require f o r their p r o c e s s i n g discrete (i.e. d i screte ly-div i s ib le) and cont inuous (i.e.

cont inuous ly-div i s ib le) r e s o u r c e s . T h e discrete r e s o u r c e is a set of m paral le l , identical

machines . T h e total amount of the r e n e w a b l e , cont inuous resource a v a i l a b l e at a t ime is

l imited. J o b s a r e all a v a i l a b l e a t the s tar t o f the process . P r o c e s s i n g rate of j o b i ,

i=1,2,. . . ,n, depends on the a m o u n t of the cont inuous r e s o u r c e al lotted to this j o b at t ime

t and is d e s c r i b e d by the equat ion:

25

mailto:officeJcs@sol.put.poznan.pl
user
Tekst maszynowy
CMST 3(1) 25-37 (1997)

user
Tekst maszynowy
DOI:10.12921/cmst.1997.03.01.25-37

user
Tekst maszynowy

user
Tekst maszynowy

user
Tekst maszynowy

(1)

where

xi(t) is the state of job i at time t,

ui(t) is the amount of the continuous resource allotted to job i at time t,

ƒ i is a continuous, nondecreasing function, ƒ i(0)=0,

Ci is (unknown in advance) completion time of job i,

jobs on machines and, simultaneously, a continuous resource allocation which minimize

In many practical situations additional resources can be allotted to jobs in amounts

(unknown in advance) from given intervals. These are, for example, the situations when

jobs are assigned to parallel processors driven by a common (electric, hydraulic,

pneumatic) power source, e.g. commonly supplied grinding or mixing machines,

electrolytic tanks or refuelling terminals. As another example one can consider

manpower and money which is a common continuous resource. Also in computer

systems multiple processors may share a common primary memory. If it is a paged-

virtual memory system and the number of pages goes into hundreds, it is purposeful to

treat primary memory as a continuous resource (see Węglarz, 1980).
Notice that the defined problem can be decomposed into two interrelated subproblems:
(i) to sequence jobs on machines, and (ii) to allocate the continuous resource among
jobs already sequenced.

Let us first analyse the representation of a feasible sequence of jobs. Observe that a
feasible schedule (i.e. a feasible solution of a discrete-continuous problem) can be

26

is the final state (or the processing demand) of job i.

for every t. The problem is to find a sequence of Assume that

the mean flow time

divided into p n intervals of length Mk, k = 1,2, . . . ,p , defined by completion times of
consecutive jobs. Let Zk denote the combination of jobs processed in parallel in the k-th
interval. Thus, in general, a feasible sequence S of combinations Zk, k= 1, 2,..., p, can
be associated with each feasible schedule. Feasibility of such a sequence requires, in
addition to the number of elements in each combination restricted by m, that each job
appears in at least one combination and that nonpreemptability of each job is
guaranteed. The last condition means that each job appears exactly in one or in
consecutive combinations in S.

For a given feasible sequence of jobs on machines one can find an optimal division of

Minimize:

subject to:

(2)

(3)

(4)

k = 1 , 2, ..., n, is the unique positive root of the following

(5)

In consequence, an optimal schedule can be found by solving the continuous resource
allocation problem optimally for all feasible sequences from a set (so-called Potentially
Optimal Set - POS) containing at least one feasible sequence corresponding to an
optimal schedule. Unfortunately, in general, the cardinality of a POS grows
exponentially with the number of jobs. Therefore it is justified to apply local search
metaheuristics such as Simulated Annealing (SA), Tabu Search (TS) or Genetic
Algorithms (GA) operating on a POS. It has been proved (Józefowska, Węglarz, 1996)
that for concave functions ƒi, i = 1, 2, ..., n, a set containing all feasible sequences

composed of n combinations of jobs, such that first n - m + 1 combinations contain m

elements and the consecutive ones m - 1, m - 2, ..., 1 element respectively, is a POS. It

will also constitute the search space of the developed algorithms.

In the following sections applications of the three above metaheuristics for discrete-
continuous scheduling problems with concave functions ƒi, i = 1, 2, ..., n, for the mean
flow time criterion are presented. In all the applications the POS defined above is the
search space for the relevant metaheuristic.

27

processing demands of jobs, , i=l,2,...,n, among combinations in S, i.e. a division

which leads to a schedule with the minimum mean flow time from among all feasible
schedules generated by S. To that end the following convex mathematical programming
problem has to be solved in the general case (see Józefowska, Węglarz, 1996):

where

equation:

2. Tabu Search

2.1. Representation of a feasible solution

A feasible solution for TS is a feasible sequence described in Section 1 (n combinations
of jobs). It is worth noticing that in such a feasible solution every combination Zk,
k = 2,..., n - m + 1, differs from the previous one by exactly one job. Otherwise
repetitions of combinations would appear in the solution. Such solutions with repeated
combinations are redundant and are not taken into consideration. Of course, every
combination Zk, k = n - m + 2,..., n, differs from the previous one in such a way that one
job is simply eliminated.

2.2. Starting solution

A starting solution is generated in two steps. In the first step successive jobs in
particular combinations are generated randomly but a job is accepted only if it does not
violate feasibility of a sequence. Since successive combinations differ by one job it can
be done as follows:

• the first combination is generated randomly as a m-element combination without
repetitions from the n-element set of jobs,

• every next combination Zk, k = 2,..., n - m + 1, is created from the previous one by
generating randomly a position in the combination (from 1 to m) and inserting into
that position a job randomly generated which has not appeared in the sequence so
far,

• every next combination Zk, k = n - m + 2,..., n, is created from the previous one by
generating randomly a position in the combination and removing a job in that
position from the combination.

In the second step a feasible solution generated randomly is transformed according to
the vector of processing demands in such a way that the job which is completed in the
last combination is replaced by the job with the largest processing demand and so on.
Intuitively, it should lead to better schedules.

2.3. Objective function

The value of the objective function of a feasible solution is defined as the minimal mean
flow time for the corresponding feasible sequence.

2.4. Neighbourhood generation mechanism

Consider a feasible solution consisting of successive positions. The total number of
positions is m(n - m + 1) + m(m - l)/2 (m(n - m + 1) positions in the first n - m + 1
combinations plus m(m - l)/2 positions in the last {m - 1) combinations). Each job

28

occurs in at least one position. A neighbour of a current solution is obtained by
replacing a job in a chosen position by another job. A job may be replaced only if it
occurs more than once in the feasible solution (every job has to be executed) and only in
the first or last combination in that it occurs (nonpreemptability). It is easy to notice
that in order to avoid repetitions of combinations in a sequence a job in its first
combination has to be replaced by a job from the next combination and a job in its last
combination by a job from the previous one. Moreover, in combinations n - m + 2, . . . ,
n, exactly one job is completed.

Assume that job i occurs in combination Zk and also in either Zk. , or Zk+1 . Then:

• if Zk is the last (but not the only one) combination which i belongs to, then i in Zk is

replaced by the only job from the combination Zk ¡ which does not belong to Zk;

• if Zk is the first (but not the only one) combination which i belongs to and

k<n - m + 1, then i in Zk is replaced by the only job from Zk+1 which does not

belong to Zk.

A neighbourhood consists of feasible solutions obtained by performing all such

replacements.

Example. Let n=5, m=3 and S={ 1,2,3},{2,3,4},{3,4,5},{4,5},{5}. The neighbouring

solutions are:
{1,4,3},{2,3,4},{3,4,5},{4,5},{5}
{1,2,4},{2,3,4},{3,4,5},{4,5},{5}
{1,2,3},{1,3,4},{3,4,5},{4,5},{5}
{1,2,3},{2,3,5},{3,4,5},{4,5},{5}
{1,2,3},{2,3,4},{2,4,5},{4,5},{5}
{1,2,3},{2,3,4},{3,4,5},{3,5},{5}
{1,2,3},{2,3,4},{3,4,5},{4,5},{4}.

Observe that exactly one job is completed in the first combination of the feasible
sequence. Thus, this job occurs in exactly one combination and can not be replaced.
Moreover, exactly one job started in combination n - m + 1 can be replaced only in its
last combination. In consequence, at most n - 2 jobs may occur in multiple
combinations. Each of them may be replaced in exactly two positions (in its first and its
last occurrence). As a result, the maximum possible number of neighbours for a given
feasible solution is independent from the number of machines and is equal to
2 (n - 2) + 1 = 2 n - 3 .

2.5. Tabu list management

The tabu list is managed according to the Reverse Elimination Method - REM (Glover.
1990). Considering the neighbourhood generation mechanism described earlier a move
leading from a feasible solution to a neighbouring one may be defined as a 3-tuple:
(index of a combination, job replaced, job introduced). A single element of the tabu list

29

(i.e. so-called Residual Cancellation Sequence - RCS) is the minimal set of moves
leading back from the current solution to a solution already visited. If the starting
solution is denoted by #1 then RCS #j (the j-th element of the tabu list) is the minimal
set of moves by which the current solution differs from solution #j (i.e. visited in the j-
th iteration).
REM takes advantage of the fact that a solution can be revisited in the next iteration
only if it is a neighbour of the current solution (i .e. if the set of moves leading back to it
from the current solution consists of one element only). In consequence, every move
occurring on the tabu list as a one-element RCS is forbidden in the next iteration. Thus,
in order to define the status of a move, it is sufficient to check only those elements of
the tabu list which contain exactly one move.
The way of updating the tabu list using REM has been described in detail in
(Józefowska, Waligóra, and Węglarz, 1996)
The tabu list length has been set at 10. The decision has been made on a basis of
computational experiments which have shown that for the considered problems this
value both prevents cycles and leads to good solutions.

3. Simulated A n n e a l i n g

3.1. Representat ion of a solution

A solution is a feasible sequence described in Section 1. It is represented by two
n-element sequences. The first one is a permutation of jobs and defines the order in

which they are started. The second one consists of machines on which the
corresponding jobs from the first one will be executed. These two sequences allow to
create the first n - m + 1 combinations of a feasible sequence. In order to define the last
m - 1 combinations we take the jobs from combination n - m + 1 and assume that the
job on the first machine is completed first, the job on the second machine is completed
second and so on.

3.2. Initial solution

The initial sequence of jobs is generated by setting all jobs in an ascending order. The
initial sequence of machines is created according to the following rule:

machine = ((job - 1) mod m) + 1.

3.3. N e i g h b o u r h o o d generation mechanism

The current solution is represented by two sequences. Therefore a neighbour may be
generated in two ways. Either by a small perturbation in the sequence of jobs, or by a
small change in the sequence of machines. We will firstly describe how to get the next

30

solution by a change in the sequence of machines. A neighbour of the current solution is
obtained in the following way. One element from the sequence of machines is randomly
chosen and replaced by another random integer from the interval [1, m]. However, the
mean flow time does not depend on the assignment of jobs to machines only. It also
depends on the order in which jobs are processed. So, we must combine changes in the
sequence of machines with changes in the sequence of jobs. To that end we apply the
shift neighbourhood mechanism which is executed by removing a job randomly chosen
from one position and putting it into another position also randomly chosen.

3.4. Objective function

The objective function is defined as the minimum mean flow time for a feasible
solution.

3.5. Initial value of the control parameter T0

In our implementation of SA we have applied a simple cooling strategy (see Aarts and
Van Laarhoven, 1987).
The initial value of the control parameter T0 is calculated from the following equation:

initial solution.

3.6. Decrement of the control parameter

The control parameter decreases according to the following function:

3.8. Length of Markov chains Lk

The length of Markov chains determines how many moves are generated for a fixed
value of the control parameter and when the present temperature is to be decreased. Our

Tk+1 = 0.95 Tk, k = 0 ,1 ,2 , . . . , .

31

where is the average increase in cost for a number of random transitions, and

is the initial acceptance ratio defined as the number of accepted transitions divided by

the number of proposed transitions. In our implementation we assume = 0.9, in other
words, we demand that the ratio of accepted moves at the start of the algorithm will be

not less than 90%. is calculated for 20 randomly generated neighbours of the

choice for the length of Markov chains is based on an intuitive argument that for each

value Tk of the control parameter a minimum number of transitions should be accepted.

In other words, Lk is determined so that at least a fixed number η m i n of transitions are

accepted. However, since transitions are accepted with decreasing probability, one

Consequently, to avoid extremely long Markov

chains for small values of the control parameter, Lk is bounded by some constant

We assume η m i n = 20 and

4. Genetic A l g o r i t h m

Genetic algorithms operate on a population of individuals, each one representing a

feasible solution of the considered problem. In our case a single individual represents a

feasible sequence of jobs on machines.

In GA there is not an evident definition of a solution neighbourhood. The process of

looking over new solutions is made by using recombination operators. Random nature

of these operators, assuming accidental changes of randomly selected individuals from

the current population, results in the difficulty in maintaining feasibility of individuals

during the evolution process. Particularly, for the considered class of problems, a

crossover operator seems to be hard to implement.

4.1. Representat ion

In our implementation of GA the representation of a feasible sequence is not so evident

as in the case of TS. Here each individual consists of two chromosomes.

The first one is a permutation of n jobs defining the order in which the jobs are started.

Since all jobs are available at the start of the process, the first m jobs start concurrently

on machines 1, 2, ... , m.

The second chromosome consists of n - m elements. It defines machines on which jobs

m + 1, m + 2, ... , n are executed. In combinations 2,..., n - m + 1 a job executed on a

released machine is replaced by the first job from the first chromosome which has not

been started yet. In combinations n-m + 2,..., n jobs are completed in the order of the

numbers of machines on which they are executed.

4.2. Creat ing an initial populat ion

An initial population is a starting point for the multidirectional evolution search

process. The simplest method of creating an initial population - the random creating - is

used in our implementation. The only assumption that has to be held during a random

creating of the individuals is maintaining a proper form of the first chromosome. In

fact, the first chromosome is a permutation of n unique numbers. In the second

chromosome, every integer number from the range [l,...,m] is feasible in every position.

32

= 8 0 .

0. for Tk would obtain Lk

4.3. Fitness of an individual

The fitness of an individual depends on the minimum mean flow time for the
corresponding feasible sequence. The shorter mean flow time, the higher fitness of the
individual.

4.4. Genetic operators

The main genetic operator is a selection operator. At the stage of the selection, a
temporal population of individuals is created. This population contains pop_size (where
pop_size is the size of the population) relatively good, in a sense of the fitness,
individuals which are potential „parents" for recombination operators. As our selection
operator, the linear ranking with elitism was selected. This strategy does not need any
scaling method, which is necessary in a case of roulette wheel for minimization
problems, and is easy to implement. The individuals were ranked in a nonincreasing
order of their corresponding values of the mean flow time. Probability pi of the selection
of individual i (i=1,2,...,pop_size) to the temporal population depends on its position ai

in the ranking and is equal to:

33

In order to assure a better convergence of our GA, the elitism property was added to the
selection operator. The best individual from the previous population is selected to the
new one independently of the ranking strategy.
The recombination operators replace randomly chosen individuals (so-called parent
individuals) by offspring individuals. The number of individuals which undergo
recombination depends on the setting of the recombination parameters. After the
recombination process the temporal population containing some new offspring
individuals and some individuals which do not undergo recombination becomes a new
population of individuals. In this way, a single iteration of GA (so-called generation) is
finished. Then a new evolution cycle is started. After a number of such cycles the
algorithm converges - the best individual hopefully represents a solution near to the
optimal one.

There are four recombination operators especially suited for the assumed representation
of a feasible sequence of jobs on machines. Two of them operate on a single parent
individual (mutation type) and the remaining two work on pairs of parent individuals
(crossover type). The first mutation type operator we call mutation I. By a mutation in
this case we understand an elementary change made in the second chromosome of an
individual. A machine in a randomly chosen position of the second chromosome is
replaced by another one.

The second mutation type operator is mutation II. This operator exchanges a random
number of randomly selected jobs. In other words, a number of jobs which will be
exchanged (from the range [2,...,n]), and then these jobs, have to be chosen randomly.
Of course, this operator concerns only the first chromosome in the selected individual.
As a result of mutation II we get a new order of jobs.

The first crossover operator, the head crossover, operates on the first chromosome
only. This operator has to preserve the form of the first chromosome (a permutation of
jobs) in both the offspring individuals. Because of a strong similarity of the first
chromosome to the path representation of the solution in Travelling Salesman Problem
one of known crossover operators (namely OX (Michalewicz, 1984)) is used as the
head crossover. This operator uses two crossing points. First, the segments between
crossing points are copied into offspring individuals. Next, starting from the second
crossing point of one parent, the jobs from the other parent are copied in the same
order, omitting symbols already present. Reaching the end of the string, copying is
continued from the first place of the string.

The second crossover operator, the tail crossover, concerns the second chromosome
only. The feasibility conditions of this chromosome allow to use its simplest version.
The tail crossover cuts the second chromosomes of both parent individuals at the same
randomly chosen cut point and exchanges the resulting segments.
Note that the above recombination operators have to incorporate the problem-specific
knowledge. It allows to maintain the feasibility of the individuals during the evolution
search process.

4.5. Other parameters of the genetic algorithm

The population size was set at 50. The stop criterion was adapted to the computational
experiment requirements and is described in Section 5. Other parameters (mutation I
rate, mutation II rate, tail crossover rate, head crossover rate) were set in preliminary
experiments.

5. Computational experiments

A number of computational experiments have been carried out to compare the
performance of the considered metaheuristics on a randomly generated set of instances.
In this section we present the results of the computational experiments.
All the heuristics have been implemented in C++ and have run on SGI PowerChallenge
XL with 12 RISC 8000 processors. As we have mentioned before, for each solution
visited in the solution space, the corresponding schedule has been found by solving a
convex mathematical programming problem. In this step specially adopted solver
CFSQP (A C Code for Solving (Large Scale) Constrained Nonlinear (Minimax)
Optimization Problems, Generating Iterates Satisfying All Inequalrty Constraints) 2.3
(Lawrence. Zhou, Tits, 1995) has been applied. The solver stopped when the absolute

34

difference in consecutive values of the objective function was less than or equal to 10-5

In order to ensure a comparable computational effort devoted to each heuristic, the stop
criterion has been defined as a number of solutions visited. This number has been set at
2000. It is clear that neither tabu search nor genetic algorithm can stop exactly after the
required number of solutions visited, so they stop after visiting at least the required
number of solutions. In fact, tabu search performed the smallest number of iterations in
which the total number of visited solutions exceeded 2000 and the genetic algorithm
generated the smallest number of generations in which the total number of individuals
exceeded 2000.

The experiments have been carried out for processing rates of jobs of the form

. Processing demands have been generated from the interval [1,100] with a

from the set {1,2} have been generated randomly
with equal probability. For each problem size 100 instances have been generated.
The first experiment has been performed for three groups of instances with two
machines and 10, 15 and 20 jobs.

The second experiment has been carried out for n = 1 0 jobs and the number of
machines m = 2, 3 and 4. For each problem size 100 instances have been generated.
The comparison among heuristics is presented in Tables 1 and 2 on the basis of three
values: the number of instances for which the relevant heuristic found the best solution
over all the three heuristics, the average relative deviation from the best solution and the
maximum relative deviation from the best solution. For each problem size # is the
number of instances for which the solution found by the considered algorithm was the
best solution found.

Table 1. Results of the computational experiments for m = 2.

Simulated Genetic Tabu Search
n Annealing Algorithm

1 6 94
10 average

relative deviation
1,025361 1,015818 1,004919

maximum 1,059911 1,065863 1,006167

relative deviation

0 1 99
15 average

relative deviation
1,048011 1,041335 1.000004

maximum 1,142909 1,101520 1.000411

relative deviation

0 0 100
20 average

relative deviation
1,076401 1,071523 1

maximum 1,218169 1,143513 1

relative deviation

35

uniform distribution. Values of

Comparing the performance of metaheuristics tested in the experiment, it is clear that
TS performs best, finding the largest number of best solutions and showing smallest
deviation from optimum for all the problem sizes.
Genetic Algorithm shows slightly better performance in terms of the average and
maximum relative deviation from the best solution found.
The relative deviation from the best solution found increases with the number of jobs
for Tabu Search. For the other algorithms the deviation practically does not depend on
the number of jobs.
For m > 2 neither Simulated Annealing nor Genetic Algorithm found a better solution
than Tabu Search for any instance tested. The realtive devition from the best solution
increases with the number of machines for both the algorithms: Simulated Annealing
and Genetic Algorithm.

Table 2. Results of the computational experiment for n=10.

Simulated Genetic Tabu Search
m Annealing Algorithm

1 6 94

2 average
relative deviation

1,025361 1,015818 1,004919

maximum 1,059911 1,065863 1,006167

relative deviation

1 4 95
3 average

relative deviation
1.035275 1.019903 1.022071

maximum 1.102449 1.073357 1.047822

relative deviation

3 43 77
4 average

relative deviation
1. 035666 1.019104 1.16719

maximum 1.117811 1.091474 1.076304

relative deviation

As we have mentioned earlier, the experiment required large computational effort.
Thus, further development of the heuristics aims at improving their computational
times. This goal may be achieved in two ways. Firstly, a heuristic evaluation of feasible
sequences visited in the search space will be introduced. Secondly, parallelization of the
search process will be implemented.

36

6. Final remarks

In this paper applications of three local search metaheuristics to some discrete-
continuous scheduling problems are presented. All the described algorithms have been
designed, adjusted and applied to the considered class of scheduling problems. The
parameters of each algorithm have been selected on a basis of computational
experiments in order to make the algorithm as effective as possible.
A computational experiment has been carried out and the results obtained by all the
heuristics have been compared with each other. Some conclusions and remarks as well
as suggestions for further research have been presented.

A c k n o w l e d g e m e n t
The computational experiments were performed at the Poznań Supercomputing and
Networking Center. This work was supported by research grant BW 43-242.

References

Aarts E.H.L., and van Laarhoven P.J.M. (1987), Simulated Annealing: Theory and
Applications, Reidel, Dordrecht.

Davis L. (1985), „Applying adaptive algorithms to epistatic domains", Proc. Internat.
Joint Conf. on Artificial Intelligence, 162-164.

Glover F. (1989), „Tabu Search - part 1", ORSA J. Computing, 1, 190-206.
Glover F. (1990), „Tabu Search - part 2", ORSA J. Computing, 2, 4-32.
Józefowska J., Dyskretno-ciągłe problemy szeregowania zadań", rozprawa habilitacyjna.

Wydawnictwo Politechniki Poznańskiej, Poznań 1997.
Józefowska J., Waligóra G., and Węglarz J. (1996), „A Tabu Search algorithm for

some discrete-continuous scheduling problems", in: V.J. Rayward-Smith, (ed.).
Modern Heuristics Search Methods, Wiley, 169-182.

Józefowska J., and Węglarz J. (1996), „Discrete-continuous scheduling problems -
Mean completion time results", European Journal of Operational Research 94

(1996), pp.302-309.
Józefowska J., and Węglarz J. (1997), „On a methodology for discrete-continuous

scheduling", European Journal of Operational Research.
Lawrence C., Zhou J.L., Tits A.L.: Users guide for C.FSQP Version 2.3 (Released

August 1995), available by e-mail: andre@eng.umd.edu.
Michalewicz Z. (1984), Genetic Algorithms + Data Structures = Evolution

Programs, Springer Verlag.
Osman I.H., Potts C.N. (1989), „Simulated annealing for permutation flow shop

scheduling problem", Omega 16, 7, 551-557.
Węglarz J. (1982), Modelling and control of dynamic resource allocation project

scheduling systems, in: Tzafestas S.G. (ed.) Optimization and Control of
Dynamic Operational Research Models. North Holland, 105-140.

37

mailto:andre@eng.umd.edu

