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1 Abstract

Exponentially Correlated Gaussian wave functions are applied to variational calculations of the
total electronic energy of several a few-electron atomic and molecular systems. It is shown that
this powerful approach enables to obtain extremely accurate results not only for two-electron

systems but also for three- and four-electron atoms and molecules.

2 Introduction

One of the major tasks of the computational quantum chemistry is to search
for solutions of the Schrodinger equation for atomic and molecular systems. The
solution presents a wave function, W, potentially bearing complete description of
the system, and its total energy, E. Unfortunately, the Schrédinger equation is
very complicated—it is composed of various singular and differential operators
and, moreover, contains generally 3 times more variables than particles compo-
sing the system. Therefore, in practice, we are not able to find exact analytical
solutions, except for trivial one-electron cases. It is natural then looking for sim-
plifications either in the Schrédinger equation itself or in the solving process.
This, however, causes that practically every solution of the Schrdédinger equation
is contaminated by an inherent error. The main goal of the quantum chemistry,
since the first days of its existence, is to develop methods reducing this error
as much as possible. Since 1990 our research has aimed at finding very accu-
rate solutions of the Schrodinger equation for small a few-electron atoms and
molecules.

The quality of the wave function can be assessed through the energy it
yields—the observable accessible experimentally. The wave function enables also
theoretical determination of many other observables which can be compared with
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measurable quantities. It supplies an additional source of information about the
quality of the wave function. Still, the energy remains the main criterion of the
quality.

The usual objective of interest is an energy difference, i.e. transition, binding,
interaction energy. However, also an absolute energy, especially when known with
high accuracy, plays important role in quantum chemistry:

« it allows to investigate more subtle energetic effects, i.e. relativistic or ra-
diative phenomena, and hence, to penetrate deeper and deeper into the
nature of the matter;

* serves as a benchmark for new computational methods;
+ enables correct interpretation of experimental data;

* supports determination of bulk properties.
There are two basic approaches to the total energy calculations:

* the traditional method—based on the one-electron approximation—the
Hartree-Fock procedure (HF), optionally followed by the Configuration In-
teraction method (CI);

* the explicitly correlated wave function method—a trial wave function con-
tains explicitly an interelectron distance variable (e.g. Kolos-Wolniewicz
(KW) wave function), so far applied successfully only to 2-electron sys-
tems and 3-electron atoms.

For many small systems it is possible to determine an accurate total energy
experimentally, setting this way a reference point to the assessment of the energy
error, AF, made in particular computation. The following diagram (Fig. 1) pre-
sents the dependence of the error in microhartree, uE, (1 E, = 4.3597482 -

10°'* J), made with the methods mentioned above, on the size of the system
expressed by the number of electrons.

3 Method

A system under consideration is defined by a Hamiltonian, f[—a quantum-me-
chanical operator describing the kinetics and all the interactions which shall be
taken into account in the model. The general nonrelativistic Hamiltonian of an
n-electron N-nucleus molecule can be written down as:
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Figure 1: Total energy error, AE, obtained from HF (+) and CI (A) calculations
and from explicitly correlated calculations with Kotos-Wolniewicz wave function
(KW, ). Notice a lack of high accuracy results for systems with more than two
electrons.

where 77, E{ are 3-dimensional vectors pointing at i-th electron and I-th nucleus,
respectively, m and e are the mass and the charge of the electron, M, and Z—the
mass and the charge of the I-th nucleus. h, €9 and 7 are constants with their usual
meaning. As the electrons are thousands times lighter and move much faster than
nuclei, the second term in the Hamiltonian (1) is usually dropped. It corresponds
to a clamped nuclei model which considers molecule as a rigid skeleton of nuclei
surrounded by moving electrons. The variational method applied to solve the
Schrodinger equation

HY = EV, (2)

has an important feature: always yields energy, F, greater or at most equal to
the exact value, E:

E > Ey. (3)

It allows to search for the wave function W using the criterion of generating as
low energy as possible. The variational principle (3) supplies a scale for assessing
the quality of trial wave functions.

To obtain the wave function in an analytical form we will apply the algebraic
approximation: W is represented as a linear combination of a finite number of

known basis  functions. V..
I
V=) crtn 4)
k=1

The knowledge of the basis functions enables to look for the algebraic expansion
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coefficients instead of a general wave function of a completely unknown shape.
In other words, we replace the lack of knowledge of W by the lack of knowledge
of the set of the coefficients C,-

4 Basis functions

At this point the choice of the analytical form of the basis functions, 1y, be-
comes a basic matter. A significant contribution in this field comes from two
Polish scientists. Wtodzimierz Kotos and Lutostaw Wolniewicz applied the basis
functions in the form of two-electron James-Coolidge (JC) [1] function written

in elliptical coordinates as

VA1, /\2»#1,15277“12) = exp [—5(/\1 + /\2)] 71"#?/\%/13(27‘12/13)’), (5)

where r,, and R describe interelectron and internuclear distances, respectively.
0 is a real and m,nj,i and p are integer variational parameters. This function
belongs to the class of the explicitly correlated functions. In 1964 Kotos and
Wolniewicz [2, 3], using the generalized form of the JC wave function, compu-
ted a variational energy of molecular hydrogen. Their value was lower than the
experimental one, apparently breaking the variational rule. Correctness of their
calculations and even validity of the Schrédinger equation was questioned until
few years later the experiment was revised—it turned out that the computations
were correct. It was a significant success of theory in connection with the com-
putational technique. Today the Kotos-Wolniewicz wave function allows to solve
the Schrédinger equation for two-electron two-nucleus systems with practically
arbitrary accuracy. For the last 30 years it has been serving as a reference point
for other wave functions and methods in this area of application. Unfortuna-
tely, it has never been generalized to larger systems. Undoubtedly, the results
by Kotos and Wolniewicz promoted the quantum chemistry to the level of the
quantitative method able to answer detailed questions concerning two-electron
molecules, and hence, the chemical bonding.

Another, the most common way of treating the electron correlation is an
application of the CI wave function. It is equivalent to regarding ¥, of Eq. (4)
in the form of determinants built of one-electron molecular functions (orbitals).
Theoretically such an expansion converges to the exact wave function. In prac-
tice, however, astronomical number of terms including functions with very high
angular momentum would be required to reach satisfactory accuracy. The CI
wave function, in contrast to the KW wave function, does not contain explicitly

the interelectron distance variable, r,, which is the main reason for the very

ij>

slow convergence. For a few-electron systems this method yields accuracy, AE,

of tens and hundreds of cm-'(see Table 1).
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Table 1: Total electronic energy error for chosen a few-electron systems obtained
from the best Cl wave functions available in the literature.

System Number AE Reference
(1 bohr = 0.529177249-10~'° m) of electrons cm~!

H, (R=1.4011 bohr) 2 38 (4]
Hef (R=2.043 bohr) 3 78 (5]
Hiz (Ry=Ry=1.757 bohr) 3 43 (6]

Li 3 63 (7]

Be 4 54 (8]
He; (R=5.6 bohr) 4 301 [9]
LiH (R=3.015 bohr) 4 318 [10]

In 1989 Enrico Clementi following the example of Hylleraas [11], created an
explicitly correlated version of the ClI wave function (H-CI). He introduced the
correlation factor replacing the basis function 1 by (l+r;)¥%. Indeed, compared
to the classic Cl the convergence has improved but this approach has turned out
computationally so inconvenient that in 1991 Clementi estimated time required
to obtain accuracy of about 10 cm™* for the 3-electron H; molecule as 3500
years of computation on an IBM 3090 class machine. He predicted that, with
some optimistic assumptions, this time could be reduced to 10-20 years [7, 12].

At this moment of development, the quantum chemistry offered a possibility
of performing either very accurate calculations limited to at most two-electron
systems or calculations on larger systems with much worse accuracy.

In 1991 we started a research on another type of the explicitly correlated
wave function—the Exponentially Correlated Gaussians (ECG). A full definition
of the ECG wave function is as follows:

K
v=3 (@ > Ckw-> ; (6)
kz=]

where S is an operator ensuring proper electron and space symmetry of the
function, and © is properly chosen spin function. The space part of the basis
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function is defined as

n . 2 n—1 n
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where i, j run over all the » electrons, and a b and Cg,k are nonlinear

ik? Vijk
parameters determined variationally. As we can see the variables 7; occur in a
quadratic form which is a feature of the Gaussian type functions. The first term
of the exponent is common for one electron functions but the second one contains
distances of all the pairs of electrons and is responsible for correlating the motion
of the electrons. The elements mentioned above compose the name of the wave

function—the Exponentially Correlated Gaussian function.

5 The wave function optimization

Every basis function %, contains, depending on the number of electrons, up to
tens of nonlinear parameters and there are hundreds or thousands of such basis
functions. Optimization of the total wave function, W, requires a location of the
minimum of the energy as a function of tens of thousands of parameters. To date
there is no universal algorithm solving this type of problem and finding a global
minimum for such a function is unfeasible. We have to accept the fact that a
minimum obtained is merely a local one and put the effort on locating it as low
as possible. It turns out that it brings satisfactory results.

In our algorithm we optimize (using Powell method [13]) simultaneously only
M parameters belonging to a single basis function with the other parameters kept
fixed. When we determine the optimal subset of the parameters we move the
optimization to the next basis function. After optimizing all the basis functions
we close the cycle returning to the first one (see Fig. 2). Every step and every
cycle lowers slightly the energy. Of course, the number of cycles is limited by an
energy lowering criterion or, most frequently, by the cost of the computations.
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Figure 2: Optimization scheme.
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In the optimization process described above the updating and the diagonali-
zation of the matrices is performed millions of times which makes the calculations
very time consuming. Therefore it is very important to use an optimal code and
machines. Thanks to the effort put into our algorithms we managed to diminish
the computation time, from the pessimistic thousands of years predicted few-
years ago by Clementi [7, 12]. to days and weeks. Also the progress in computer
technology allows not only to improve the quality of our results but also perform
calculations unfeasible in the past.

The algebraic approximation (4) converts the Schrodinger equation (2) into
the matrix form: HC = ESC. This is a common general symmetric eigenproblem
which is solved in two basic stages:

* matrix elements calculation,
e matrix diagonalization.

The latter stage can be very effectively vectorized, especially when the operating
system supplies with dedicated linear algebra libraries. Nowadays, a diagonali-
zation of a dense 1000 X 1000 matrix makes neither time nor memory problems.
During the optimization of a single basis function only one row and one column
of the H and S matrices are updated. Utilization of this fact in our algorithm
was one of the major steps leading to obtaining good results and performance.
The former stage, the matrices build-up, because of the mutual matrix ele-
ments independence, can be effectively paralldized. The loop running over the
matrix indices comprises the standard object undergoing the parallelization. The
following diagram (Fig. 3) presents a practical example of the speedup obtained
when the procedure of filling up the matrices is well parallelized. This particular
picture was obtained from the Atexpert performance monitor on the 16-processor
Cray J916.
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Figure 3: Performance speedup as a result of the parallelization.
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The access to the parallel computers is particularly important for extending
our method to larger and larger systems—the cost of computing of one matrix
element grows with the number of electrons as a factorial function. Regarding
that, for fixed basis set size, the diagonalization cost remains constant, the effec-
tiveness of the matrix elements computation stage becomes the most important
factor of the whole approach. Massively parallel computers would be the most
desired tool for this type of problem, especially when larger atoms and mole-
cules are of interest. Figure 4 shows how dramatically grows the cost of the
computations when going from two-electron to larger systems.
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Figure 4: The cost of computation growth with the number of electrons.

6 Results

Results presented in this section summarize the last few years of our work on
algorithms and source codes. The computer programs applied were created exc-
lusively in our laboratory. The calculations were performed during last two years
and some of the results were not published yet. All the computations were done at

Adam Mickiewicz University or Poznan Supercomputing and Networking Center.

6.1 2-electron systems

For 2-electron molecules the ECG functions enable to solve the Schrodinger equ-
ation with an accuracy of at least 10 significant figures and, as we have shown
on many examples [14, 15], are, from energetic point of view, equivalent to the
Kotos-Wolniewicz wave functions. Table 2 collects the results for the hydrogen

molecule in its ground and several excited states with various spin and space
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Table 2: 2-electron systems.

H,, ground state, R = 1.4011 bohr

Energy/Ej Reference
1200-term ECG —1.174475931211 [16]
760-term ECG —1.1744759310 this work
883-term KW —1.1744759307 [17]
full CI —1.1743043 (4]
Ho, (L3Eg’ state, R = 1.8683 bohr
600-term ECG —0.737156011 [15]
177-term KW —0.737155958 (18]
Ho, b3S} state, R = 2.0 bohr
600-term ECG ~0.897076330 [15]
110-term KW —-0.897076017 [19]
Hq, B'S} state, R = 2.43 bohr
600-term ECG Z0.756690483 [15]
KW —0.756690248 20]
H,, C11, state, R = 1.952 bohr
600-term ECG ~0.718368027 [15]
KW —0.718367979 [21]
Hy, EF'S} state, R = 1.5 bohr
600-term ECG —0.703000229 [15]
KW ~0.702998510 [22]
ng, ground state, Rio = Ry3 = Ro3 = 1.65 bohr
600-term ECG —1.343835624 [15]
R12-CI ~1.3438351 23]
HeH*, ground state, R = 1.46 bohr
600-term ECG —2.978706591 (15]
JG —2.97870262 (24]
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symmetries. In al the cases the energy obtained from the ECG is the most
accurate ever published. The same quality of the results have been obtained for
HeH* and HI. The choice of the systems presented in the tables proves that
the ECG guarantee high quality of the results regardless of the spin or space
symmetry, the charge or the number of nuclei. For the ground state of H, the
ECG functions yield the accuracy of a nanohartree. These are the most accurate
calculations on a molecular system (except for the trivial 1-electron case) ever
performed. In the case of the excited states we estimate the energy error as
0.001 cm™! for the triplet a and b states and as 0.01 cm™* for the singlet states:
B, C and EF. Similarly, for the H; the accuracy is about 0.001 cmt, and for
HeH* about 0.01 cm™ . In Table 2 our results are compared with the other best
variational calculations. Obtaining results of this quality is presently possible on
a personal computer in time of several hours.

6.2 3-electron systems

Among the 3-electron systems we have performed calculations for Hjz, helium
dimer cation He2+ and for lithium atom (Table 3). The energies obtained are
computed with the accuracy of 7 - 9 significant figures and, except for Li, are
significantly more accurate then any other variational results. Hz is the molecule
which Clementi group was struggled with. Contrary to their pessimistic predic-
tions we can obtain an accuracy of 1 cm™* in several days of computationson

SGI R8000/75 type machine. For He.}L we estimate that the energy error is less
then 1 cm™*. The latter calculations were performed for a wide range of the
bond distance and were followed by rovibrational transition calculations. The
computed transitions are on average 0.02 cm™* in error when compared with
spectroscopic data [25]. The calculations on Li atom are in progress. At present

stage the energy error is ca. 0.001 cm’.

6.3 4-electron systems

The accuracy of 7 digits is also attainable for 4-electron systems (Table 4) either
atomic, Be, or molecular, He, and LiH. In case of the beryllium atom the accu-
racy of our calculations is about 1 cm™!. The result has verified an experimental
energy of beryllium. It turned out that the latter was slightly too high. Excep-
tionally accurate are the results for the helium dimer—the energy error is in
the range of 0.05 — 0.09 cm™!. This is the first time when an analytical wave
function yields such an accurate energy for a 4-electron system. At present, we
are working 011 the whole energy curve which, hopefully, will contribute to the
solution of the problem of vibrational stability of the system. The calculation
on LiH is in progress. At present stage the estimated energy error is less than

9 cml.
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Table 3: 3-electron systems.

Hj, ground state, Ry = R, = 1.757 bohr

Energy/E Reference
600-term ECG, 7200 par. —1.65914905 this work
Monte Carlo —1.659156 [26]
CI (1.7572) —1.6589596 (6]
Hej, ground state, R = 2.042 bohr
600-term ECG, 5400 par. —4.99464087 this work
ICMRCI (2.043) —4.994284 (5]

Li, ground state
2172-term ECG, 13032 par. —7.4780603175 this work
H-CI —7.47806032310 (27]
Table 4: 4-electron systems.

Be, ground state

Energy/Ey, Reference
1200-term ECG, 12000 par. —14.66735502 (28]
H-CI —14.667350 [29]
MCHF —14.667113 (8]
He,, ground state, R = 5.6 bohr
1600-term ECG, 22400 par. —5.807483462 this work,[30]
Monte Carlo —5.8074836 [31]
full CI —5.806110 (9]
LiH, ground state, R = 3.015 bohr
600-term ECG, 8400 par. —8.070449 this work
CCSDT1-R12 —8.07048708 (32]

7 Summary

The ECG functions have been known in quantum chemistry for over 30 years.
The first results with these functions were published in 1960 [33, 34], However,
accused of slow convergence, ECG were rejected for a long time. As we have
proven recently this opinion was unjustified and today the ECG supply many

best variational results.
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The application of the ECG functions has pointed out that the algebraic
approximation can yield very good results. For the first time one can obtain
a satisfactory convergence for systems with more than 2 electrons. This is a
turning point in the computational quantum chemistry moving the research on
a few-electron systems to a new level of development. Graphically the progress
is represented by the new series of circles (ECG) on the following diagram.
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Figure 5: Total energy error, AE, obtained from HF (<) and CI (A) calculations

and from explicitly correlated calculations with Kotos-Wolniewicz wave function
(KW, +). A new set of accurate results (ECG, O) develops along the X axis.
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