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A b s t r a c t 

Recent deve lopments in computer s imulat ions of phase transit ions in Ising-like sys tems and 

t h e r m o d y n a m i c behav iour of q u a n t u m spin chains are reviewed. A combinat ion of stochastic 

Monte Carlo as wel l as determinist ic transfer matr ix and finite-size d iagonal izat ion m e t h o d s 

is descr ibed in b o t h f ields as regards static properties. A s y m p t o t i c analysis and extrapola-

tion techniques are presented in detail. Some effective-field methods , series expansions, spin 

d y n a m i c s s imulat ions and exper imenta l appl icat ions are also discussed. 

1 Introduct ion 

Phase transitions and critical phenomena have been the subject of intense study 
for a few decades. It has led to the concept of universality, scaling invariance 
and the idea of a small number of critical exponents. Only a limited number 
of exact solutions has been found so that main results are based on approxi-
mate solutions (such as series expansions and renormalisation group theory) and 
numerical techniques. 

Recent progress in computer technology and development of new algorithms 
for Monte Carlo simulations together with new methods (Landau, 1994) of analy-
sis have yielded results of high resolutions competing with the series expansion 
and renormalisation group data. 

The role of computer simulations in the field of low-dimensional quantum 
spin systems has also increased since the pioneering work of Bonner and Fisher 
(1964). Particulary interesting are the applications to some soliton-bearing and 
Haldane-gap systems. 

For a classical system one can describe the states of the system and their 
energies in terms of a single set of variables, like the z-components of the spin in 
the Ising model. Each configuration of the variables appears with the Boltzmann 
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probabili ty and the problem is to sample the configurations according to the 

Bol tzmann distribution. 

Generalization of the Monte Carlo technique to quan tum machanical problem 

is not an easy task. In this case the s tates and energies are the eigenstates and 

eigenvalues of Hamil tonian operator acting on the Hilbert space. In many cases 

it is even not possible to describe exactly these eigenstates. 

This article is not intended to be exhaustive. It is ra ther aimed at reviewing 

simulation studies the author has been involved in. The report is organized as 

follows. In Section 2 some simulations methods are described and in Section 

3 the numerical analysis of simulations is discussed. Selected results for some 

classical and q u a n t u m systems are presented in Section 4. The report is closed 

with some conclusions. 

2 Methods of simulations 

2.1 Classical Monte Carlo 

This me thod is applied here to the three dimensional ferromagnet ic Ising model 

with the Hamiltonian 

, the sum runs over all nearest-neighbour pairs and the 

periodic boundary conditions are imposed. 

Traditionally, Monte Carlo simulations were permformed using the single 

spin-flip me thod of Metropolis which becomes ra ther inefficient near phase t ran-

sitions due to critical slowing down. To improve the performance, the multispin 

coding method was devised bu t it did not eliminate critical slowing down (Lan-

dau, 1994). Only recently a number of cluster-flipping methods accomplished 

its significant reduction. Swendsen and Wang (1987) found an algori thm based 

on a theorem mapping the Po t t s model into a percolation model. At first an 

initial spin system is split into a set of correlated clusters and then it is flipped 

randomly with probability 1/2 . Fur ther improvement is due to Wolff (Wolff, 

1989). According to this approach, a single cluster is growing at first and then it 

is flipped. In our simulations (Blöte and Kamieniarz, 1993) the cluster methods 

are applied. 

2.2 Transfer matr ix 

The transfer mat r ix me thod is a powerful tool of simulations. In the case of an 

Ising-like model located on a square lat t ice LX x LY with periodic boundaries 

and nearest-neighbour interactions the t ranfer mat r ix is introduced as follows 

(1) 
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where the spin 
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where the transfer mat r ix T is defined in the 2l y - dim manifold of all configu-

rations of Ly spins 

(2) 

(3) 

(4) 

(5) 

The transfer mat r ix T can be split into a product 

where 

is diagonal, whereas 

is non-diagonal and can be expressed as a product of sparse matrices. 

The t ranfer mat r ix enables not only evaluation of the par t i t ion funct ion but 

also the magnetizat ion moments which enter the Binder cumulant (Binder, 1981). 

From the expansion 

where 

the corresponding moments of the magnetizat ion can be expressed as 

(6) 

(7) 

(8) 

To calculate accurately the lower order moments (8), it suffices to find the 
corresponding coefficients Zk within a per turbat ive scheme, i.e. to expand the 
diagonal mat r ix T„ in terms of h and to keep track of the powers of h during 
successive multiplications of a given vector by T. 

(Kamieniarz and Blöte, 1993a). The spins belonging to the jth column are 

denoted by so tha t 



2.3 Quantum M o n t e Carlo and transfer matr ix 

The finite-temperature quantum Monte Carlo (QMC) method has been applied 
(Suzuki, 1993) to a number of 1-dim and 2-dim spin systems. Here we consider 
1-dimensional chains described by the anisotropic Heisenberg Hamiltonian with 
nearest - neighbour interactions (Cullen and Landau, 1983; Kamieniarz, Mallezie 
and Dekeyser, 1988) 

The starting point of QMC method is the generalized Trotter formula for 
the exponential of a sum of k noncommuting operators 

(9) 

where m is an integer referred to as the "Trotter index". 
One can apply this formula to the partition function and map a given 1d 

quantum model into a classical 2d system which can be studied using classi-
cal Monte Carlo or transfer matrix methods. The mapping is accomplished in 
the following way. The partition function Z is expressed in terms of all the 
eigenstates of the spin chain and the Hamiltonian is partitioned into a sum of 
two-body operators 

58 

where 

(10) 

(11) 

In the checker-board decomposition (CBD ) (Kamieniarz et al., 1988) the 
Hamiltonian is split into two parts , containing the two-body and 
operators with odd and even n, respectively. The mth-order approximant to the 
partition function is then given by 

where 

(12) 

(13) 

(14) 

By introducing the complete sets of states 

one gets 

(15) 



2.4 Fini te-s ize diagonal izat ion 

Exact calculations on small finite-size lattices are considered an impor tan t com-

plement to and a test of computer simulations on larger lat t ice systems (Ma-

nousakis, 1991). Although limited to substantially smaller sizes, they do not 

encounter such possible sources of errors in simulation studies as the Trot te r 

approximation or metastabi l i ty in Monte Carlo sampling. 

T h e calculations proceed as follows (Bonner et al., 1964; Blöte, 1975). The 

ma t r ix representat ion of a given spin Hamiltonian is found and diagonalized 

numerically for finite chains with size N up to Nmax and free boundary condi-

tions. For a given size, interesting thermodynamic functions are then evaluated 

according to statist ical mechanics. 

2.5 Spin dynamics 

An interest in dynamics of the ferromagnetic easy-plane Heisenberg chains stems 
f rom spin solitons (Mikeska, 1978) predicted theoretically for the Id model in 
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where 

and r is odd (even) for This leads to the expression for a classical 
(16) 

part i t ion function 

for a 2d latt ice of size N x 2m, where (n, r} indicates t ha t n and r are bo th odd 

or b o t h even. Because of the t race in Z , we have periodic boundary conditions 

in the Trot ter direction. Imposing the periodic boundary conditions on the 

chain direction, the 2d lat t ice consists of N x m blocks of four spins ("vertices") 

(Kamieniarz et al., 1988) and the quant i ty 

(17) 

(18) 

is called the weight of the vertex. 

In the real-space decomposition ( R S D ) (Kamieniarz et al., 1988) one ap-

plies the Trot ter formula to the part i t ion function using the representat ion 

Again a par t i t ion funct ion of a classical spin - 1 /2 Ising 

system on a 2d lat t ice with N x m vertices is obtained. 



the symmetry breaking field which can be mapped under certain approxima-

tions onto the classical sine-Gordon model, yielding nonlinear excitations. In a 

reliable computer experiment with all microscopic parameters controlled and all 

polarizations directly measured, new insight into the validlity of the sine-Gordon 

model can be expected (Gerling and Landau, 1990). 

The dynamics of models with continuous degrees of freedom can be derived 

directly from equations of motion (Grille, Kamieniarz and Gerling, 1992). In 

the f irst s tage a s tandard importance sampling Monte Carlo technique is used 

to generate equilibrium spin configurations for particular values of T and B 

with chain length of typically N = 20000 sites and periodic boundaries. Next 

the coupled nonlinear equations of motion for the spin variables are accurately 

integrated up to time t m a x = 1 0 0 / J with a time integration interval Δ = 0 . 0 1 / J . 

For each time integration, the time and space dependent spin-spin correlation 

functions 
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are calculated and averaged over the 10 s tar t ing configurations. Finally, the 

time and spatial Fourier t ransforms are evaluated to yield the dynamic s t ructure 

factors S ( q , w ) , where (= x,y,z) denotes polarization. The same technique is 

also reviewed by Landau (1994) in relation to the critical dynamics simulations. 

3 Methods of analysis 

3.1 F i n i t e - s i z e s c a l i n g 

We consider a system with finite-size parameter L, e.g. a hypercube of size Ld 

with toroidal boundary conditions. In the vicinity of a renormalisation fixed 

point, the parameters describing the system include the temperature field t, the 

magnetic field h and the finite-size field 1/L. Neglecting the irrelevant fields and 

nonlinearities, the asymptot ic finite-size scaling relation for the singular par t of 

the free energy per spin (Pr ivman and Fisher, 1984; Barber , 1983) can be wri t ten 

as 

(19) 

(20) 

(21) 

where b is the rescaling factor, and y t and yh are the bulk thermal and magnetic 

exponents, respectively. This finite-size scaling relation has been widely applied 

in numerical studies of critical phenomena and in analysing experimental data. 

Choosing b = L, differentiating k t imes with respect to h and put t ing h = 0, 



The scaling function on the right hand side represents a system far from 
criticality (the finite-size parameters has the value 1) and is therefore assumed 
analytic, and may be Taylor expanded in tLyt. Expressing the magnetization 
moments (M k) in derivatives of the free energy, neglecting the analytic part, one 
shows that these moments obey the same scaling behaviour as above. Thus, in 
the vicinity of the fixed point (L large, t small) the ratio 
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satisfies 

where Q and ai are unknown parameters. 
Another unknown is the critical temperature Tc which enters via t ~ T — Tc. 

The unknowns can be determined by fitting (23) to the Monte Carlo data. If Q 
is known, one unknown parameter is eliminated, so that the critical point can 
be obtained more accurately. 

The finite-size scaling relation has to be modified (Kamieniarz et al., 1993a) 
for the 2d Ising model which is particular in some respects. Firstly, the specific 
heat singularity has a logarithmic divergence so that the zero-field free energy 
should contain explicitely a logarithmic term (Niemeijer and van Leeuwen, 1976). 
Secondly, it has been argued (Aharony and Fisher, 1983) that the leading cor-
rections to scaling are analytic and can be accounted for by nonlinearities of the 
scaling fields gt and gh related to the thermal field t and the ordering field h. It 
can be arranged that the renormalisation equations which are nonlinear in t and 
h, become linear in variables gt and gh. Thus under rescaling by a factor of b 

(22) 

(23) 

(24) 

where the primes denote the renormalised quantities. Furthermore, we have for 
the finite-size field 

so that for the 2d Ising model, which has yt = 1, the fields gt and 1 /L fulfil the 
same relation. Their ratio gtL is invariant under rescaling and, along a trajectory 
with constant g t L one may combine gt and 1 /L into a single field proportional 
to 1 / L , keeping in mind that the critical amplitudes may still depend on gtL. 

Along this trajectory the known results (Aharony et al., 1983) for the scaling 
behaviour of the free energy in terms of gt and gh can be generalized and the 
corresponding singular part F(s) of the total free energy is thus expressed as 

(25) 



where A and B are unknown amplitudes and the nonlinear fields are expanded 
as 

(26) 

The scaling form of the free energy enables the calculation of derivatives with 
respect to the field at the critical point t = 0, h = 0. From the relations 

(27) 

we obtain (Kamieniarz et al., 1993a) the following expansion for QL up to L3-4yh: 

(28) 

This expansion contains not only a number of algebraic powers, but also 
logarithmic terms which may complicate the determination of Q from the finite-
size results. 

3.2 Conformal invariance 

Conformal invariance can be exploited to relate the properties of spin models 
on strips of finite width L and infinite length with periodic boundary conditions 
to those of the corresponding 2d system. A relation derived by Cardy (1987) 
applies to the finite-size amplitude of the correlation length 
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(29) 

(30) 

(31) 

where xi = d — yi is the anomalous dimension of the observable associated with 
the correlation length The scaled gaps 

where 

provide estimates of xi which can be evaluated from power-law extrapolations. 



3.3 Finite-s ize extrapolat ions 

Est imates of thermodynamic quantities for macroscopic systems can be found 
f rom the finite-size d a t a Ajv by recourse to extrapolat ion procedures (Bonner 
et al., 1964; Blöte, 1975; de Neef, 1976). The series AN have been mainly 
analysed in te rms of polynomial expansions. These methods assume (Campana , 
Caramico D'Auria , Esposito, Kamieniarz and Dekeyser, 1990) t h a t the An may 
be approximated by expressions of the form 
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where are obtained by minimizing the mean square deviation 

and yN = f ( 1 / N ) , with a funct ion f ( x ) fulfilling the proper ty f(0) = 0. The 

pa rame t r B0 is clearly the es t imate for A in these methods . Apar t f rom the 

magni tude of 2 , the quality of this analysis can be es t imated f rom the ra te of 

convergence obtained for Bk when the lowest index N1 is changed. 

The polynominal extrapolat ions usually performed, correspond to the choice 

yN = 1 / N . Because of the limited number of AN values, the results may not 

be improved by increasing the order n of the polynominal as the higher-order 

coefficients B k do not always remain small. In practice, the series have been 

analysed by linear (n = 1) and quadrat ic (n — 2) fits. 

(32) 

(33) 

(34) 

(35) 

One tries to obtain a be t te r convergence by first t ransforming the variable 1/N 

into yN = f(1/N) and then by fitting the An d a t a to a low-order polynominal of 

the form (32). In our analysis ( C a m p a n a et al., 1990) however, the best results 

in t e rms of acceptable est imates with low 2 values were obtained with t he form 

Obvious choices are also simple powers 

or . In each case, is a free paramete r again determined by 

minimizing 2 . Al though formally equivalent to the previous me thod (expan-

sions in powers of 1 / N ) , it has the advantage of allowing the incorporat ion of 

higher-order te rms in a low-order expansion. 

Some relations have been rigorously established for the finite-size est imates. 

The asymptot ic form of the specific heat per site CN calculated for the chains of 

size N depends on the boundary conditions (de Neef, 1976). For free boundary 

conditions: 



where the correction te rm has an al ternating effect depending on the even or 
odd value of N, whereas for periodic boundary conditions: 

The 1/N and l / m 2 dependence of the thermodynamic quantities in the low 
tempera ture region for the ferromagnetic S = 1 easy-plane Heisenberg chain 
is i l lustrated in Figs. 1-3 for the microscopic parameters J/kB = 20.5 K and 
A/ J = 0.425 found by Campana , Caramico D'Auria , Esposito, Esposito, Gerling 
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(36) 

(37) 

where not only the correction te rm is of the lower order with respect to N but 

also the second term depends on N. For antiferromagnetic interactions is 
al ternating in sign for even and odd N, whereas for ferromagnetic exchange - it 
is uniform in sign. 

As to the QTM finite-m results, (Delica and Leschke, 1990) the behaviour 

is expected. 



and Kamieniarz (1992a). The variation of the molar finite-size specific heat 
(Campana, Caramico D'Auria, Esposito, Esposito and Kamieniarz, 1996) with 
respect to 1/N is plotted for temperatures 
entire temperature range the 1 / N dependence shows linear behaviour so that 
the extrapolated data can be extracted with the accuracy of an order of 0.1% 
and within this error they agree with the transfer matrix data plotted versus 
1/m2 in the same figure. 

The relation (35) refers only to the specific heat, nevertheless we also analyse 
(Campana et al., 1996) other thermodynamic quantities in terms of the inverse 
length N -1. As can be seen from Fig. 2, even in our low temperature region 
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in Fig. 1. In the 

the linear dependence of for the finite-chain data in 1 / N and 
that of the QTM results in 1 /m 2 is well fulfilled. As to the excess specific heat 

the corresponding size dependence is illustrated 
in Fig. 3. 

Qualitatively the same finite-size behaviour is observed for systems with an-
tiferromagnetic interactions. In Fig. 4 a typical size dependence of susceptibility 
is shown for a model of the Haldane-gap compound CsNiCl3 (Kamieniarz and 



Matysiak, 1996a). 
The finite-size data can also be analysed (Campana et al., 1990) in the frame-

work of the Pade approximant method. This method is based on the fact that 
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the limit of a series AN can be obtained from 

where 

so that 

From the coefficients AN one can build Pade approximants to (1 — z) F(z) 
and get estimates of A variant of the method is the alternating -algorithm 
described by Barber (1983). 

(38) 

(39) 

(40) 



Another procedure is to construct new series (Bonner et al., 1964; Blöte, 
1975). If the series AN consists of a number of power-law te rms N~Xi (i = 

1 , 2 , . . . ) , a given power N~x is eliminated (Kamieniarz et al., 1993a) in the new 
series defined as 
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In the modified series the power-law behaviour is preserved with the same 

(41) 

constant bu t without the te rm containing N –x. 

3.4 Effective fields with correlations 

A possible generalization of the mean-field approximation for a system with 

short-range interactions can be introduced (Dekeyser and Kamieniarz, 1992) as 

follows. We divide the latt ice into a finite cluster and the its boundary 

complement as shown in Fig. 5. The corresponding spin degrees of f reedom 

are denoted by the variables The Hamiltonian of a system 
is split into the form 

(42) 



and we address a problem of est imating the thermal expectat ion value 

(43) 

(44) 

(45) 

The simplest approximation of is the mean-field approximation, i.e. a 

dependence linear in r variables. However, higher order terms in r can be also 

( 4 6 ) 
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imposed according to the symmetry of These new terms contain correlations 

in T variables. 

The function can be expanded in a form (Dekeyser et al., 1992) 

For a classical system the average 

can be expressed in terms of the effective Hamiltonian where 



where the coefficients b i j take into account the correlations between the spins 

L MFA M F R Qsc Qrg M F R QT9 M F R Qrg L 

Kc yt yh 

1 0.250 
2 0.286 0.361 0.412 0.69 1.50 

3 0.308 0.381 0.414 0.409 0.78 0.972 1.57 1.69 

4 0.323 0.393 0.417 0.412 0.82 0.989 1.60 1.69 
5 0.335 0.401 0.84 1.62 

The qualitatively different si tuation appears for quan tum mechanical models. 
The Bol tzmann factor cannot be factorized so t ha t an effective Hamiltonian 
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of The symmetry properties of the cluster are reflected in the symmetry 

properties between these coefficients. 

Then a sequence of systematically improvable approximations can be worked 
out (Kamieniarz, Musial and Dekeyser, 1994), imposing selfconsistent conditions 
on the coefficients in eq.(46) for Q (in analogy with the usual mean field approx-
imation) or implementing the renormalisation-group ideas (in analogy with the 
mean-field renormalisation group method (Indekeu, Mar i tan and Stella, 1982) 
denoted as M F R G ) which lead to non-classical critical exponents. 

The critical couplings for the Ising clusters with L2 sites on the 
square lattice are given in Table 1. In the second and the third column, the cluster 
mean-field approximation results and the original M F R G predictions (Indekeu 
et al., 1982) are given. Performing the selfconsistent calculations (Kamieniarz, 
Musial and Dekeyser, 1996b) with two parameters in Q(r) for the pair correla-
tions of r, we find the results for KC given in the 4th and 5th columns of Table 
1 for the Q and the renormalisation-group scheme, respectively. A much faster 
convergence is obtained by increasing the order of the approximation t h a n by 
increasing the cluster size in MFA. The corresponding critical exponents y t and 
yh for the thermal and ordering fields are given in the remaining pa r t of Table 
1. The values are considerably improved, in part icular the exponents yt. 

may also depend on the variables f rom the interior of the cluster 

We assume (Dekeyser et al., 1992) t ha t the strongest contributions to 

appear at or around the boundary and we choose them according to the 

symmetry of 

(47) 



For simple 1d Heisenberg Hamiltonian without external field, no broken sym-

met ry can be expected and we can argue t ha t for symmetry reasons no external 

field can appear in H'. The first contribution t ha t can be expected in H' is an 

ex t ra Heisenberg interaction between the first and the second spin in a finite 

segment, and equally between the last and the last bu t one: 

Our finite-size predictions for the zero-field specific heat in the low tem-
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where for all other i. 

(48) 

pe ra tu re region are i l lustrated in Fig.6, 

performing direct diagonalization with free boundary conditions (Kamieniarz et 

al., 1996b). The results of the s tandard finite-segment calculations (D = 0, 
given by symbols, reveal a s trong size dependence. Assuming 

and imposing we find t ha t the variation in te rms of 1/N is 

significantly reduced and the d a t a converge towards the same asymptot ic value. 

We consider these results encouraging and our scheme a key issue to get 

reliable extrapolat ions of the thermodynamic quantities at t empera tures lower 

t h a n those considered earlier ( C a m p a n a et al., 1990). 



The standard molecular field approximation is still a valuable tool for ob-
taining qualitative understanding of phase diagrams whenever exact solutions 
are impossible. An extended Ashkin-Teller model (Pawlicki, Kamieniarz and 
Rogiers, 1995) belongs to that class and can be expressed in terms of spin vari-

Phase diagram of the original model (K = 0) on a two dimensional lattice 
has been discussed by Baxter (1982). Some renormalisation group calculations 
(Cachine, Drugovich de Feli and Caticha, 1989) have been undertaken to obtain 
a more accurate description of the diagram. Exact solutions for a limited range 
of interaction parameters are also available (Pearce and Seaton, 1990). 

We performed a numerical molecular-field analysis of the extended model, 
considering a bipartite lattice and the following order parameters: 

where integers 1 or 2 distinguish between different sublattices and (...) is a ther-
mal average. 

(50) 
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ables as 

(49) 

Results of our numerical analysis for the symmetric case are 
summarized in Fig. 7, which displays a rich temperature phase diagram. The 
surface of phase transitions is symmetric with respect to the plane so 
that we show only a few lines corresponding to Except for the areas 
denoted by broken lines, the critical surface consists of second order transition 
points. At these points only for K = 0 all the order parameters simultaneously 
vanish. For remain always nonzero because K the parameters 
acts on spins as a magnetic field. 

At point A two lines of tricritical points appear according to the symmetry. 
On the FM line the surface bifurcates. In a higher part (FMG and its symmetric 
counterpart for K < 0) there is a jump in all the order parameters and with 
increasing J4 this surface turns into a single second order transition line GC. At 
the point H, the surface indicated by lines c begins to climb up along the line a. 

For another sheet of critical surface emerges from point D with 
two lines of tricritical points. Again, only a line for K > 0 is indicated. Two 
separate sheets of critical suface are joined by a single, second order transition 
line DH. 



4 Results of simulations 

4.1 3d Ising model 

The three-dimensional Ising model continues to be a subject of investigations, 
in part icular its critical behaviour. Whereas the most accurate results tradit ion-
ally came from series expansions (Liu and Fisher, 1989; Nickel and Rehr , 1990) 

-expansion (Le Guillou and Zinn-Justin, 1980), the error margins 
quoted in Monte Carlo based approaches are shrinking considerably (Ferrenberg 
and Landau, 1991; Baillie, Gup ta , Hawick and Pawley, 1992). However, numer-
ical results of such simulations are not always in a satisfactory agreement with 
one another. Although these differences are not large, they invite the considera-
tion of possible sources of systematic errors such as effects due to a poor random 
number generator, effects introduced by histogramming methods , the use of a 
single row of pseudo-random numbers for a few parallel simulations or neglecting 
corrections to scaling in fi t t ing procedures of simulation results. 

We have simulated simple cubic Ising lattices with periodic boundary condi-
tions and analyseed the ampli tude rat io 
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and f rom the 



where QL is given by Eq.(22) and L is the linear system size. The Monte Carlo 
d a t a were mainly generated using the Swendsen-Wang cluster me thod for K = 

0.221653 (Blöte et al., 1993) bu t we also included some contributions f rom the 
largest-cluster method and Wolff algorithm (Blöte and Kamieniarz, 1994). 

T h e Monte Carlo d a t a collected in Table 2 are restr icted to ra ther small 
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size systems but have a greater statistical accuracy t h a n other results 

known to us for these systems. We have analyseed our d a t a according to 

(51) 

with a1 = 0.86 and yi = 1.59 (Liu et al., 1989; Nickel et al, 1990; Le Guillou 

et al., 1980; Ferrenberg et al, 1991) in order to determine Kc, yi and g. A 



We found tha t g = 1.609±0.004 , y i = - 0 . 8 5 ± 0 . 0 4 , in a good agreement with 
a recent series result of Nickel and Rehr (Nickel et al, 1990): yi = —0.83 ± 0.05. 
If we assumed a fixed value y i = - 0 . 8 , as was done by Livet (1991), we would 
obtain Kc = 0.2216445 (12) for the critical point. Including yi as a variable, our 
final est imate of the critical point is 

4.2 2d Ising-like models 

The universal critical point rat io Q is a measure of the shape of the magnetizat ion 
for a Gaussian distribution and Q = 1 for the long-range 

ordered s tate) . Its value for square, critical Ising systems with toroidal bound-
ary conditions was determined by Bruce (1985), and by Burkhard t and Derr ida 

0 . 8 6 . 

It is a very useful quant i ty for accurate determination of the critical points of 
models tha t are not solvable, but can be assumed to belong to the Ising univer-
sality class. The critical point of such a model can be est imated by application 
of f i t t ing procedures to Monte Carlo results for QL near criticality. 

The ratio Q depends not only on the type of boundary conditions (Kamieniarz 
et al., 1993a). In the isotropic case, it depends also on the aspect ra t io and in 
the anisotropic case, on the rat io of the coupling s t rengths in different directions 
(Kamieniarz et al., 1993a). 

Conformal invariance has been used (Burkhardt et al., 1985) to calculate Q, 
bu t unfor tunately this approach is restricted to ra ther special boundary condi-
tions. On the other hand, the t ransfer-matr ix results of Burkhard t et al. (1985) 
allow a rather accurate determination of Q for square systems with toroidal 
boundary conditions: graphical extrapolat ion (Blote, Compagner and Hoogland, 
1987) of the da t a in Table II of Burkhard t et al. (1985) yields Q = 0.856 ±0 .002 . 
For high resolution Monte Carlo simulations, however, it is desirable to find the 
universal ratio Q with an accuracy of more than 3 decimal places. 
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least-square fit showed tha t the da t a for L = 4 deviate significantly, and the fits 
thus apply to 

If the critical point is indeed within these error bounds, Rosengren's con-
jecture (Rosengren, 1986) t anh or Kc 

incorrect. Our result for Kc is about three s tandard errors smaller than tha t 
quoted by Landau (1994), and three or more s tandard errors larger t han values 
listed by Liu et al. (1989). A comprehensive comparison is given in the review 
of Landau (1994). 

0.2216586 is 

distribution (Q = 

(1985) as Q 



Considering square L x L systems, the numerical t ransfer ma t r ix est imates 

Wi th in a margin of 3 x 1 0 - 5 , our results for 
expression 
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of are calculated (Kamieniarz et al., 1993a) and coincide with those 

previously published for (Burkhard t et al. 1985) up to all the decimal 
places quoted. Having obtained Q l , we have extrapolated the d a t a using, the 

asymptot ic formula (28) for L We have performed direct i terative fits of 
this expression, taking into account different numbers of terms and we est imated 

(52) 

with a numerical uncertainty ±1 on the last decimal place, given in parenthesis. 

Finally, results for Q of some rectangular systems with different aspect ratios 
are shown in Table 3. For 2 the calculations used L x 3L systems with 

15) and anisotropic couplings (Kamieniarz = 1, where L L 14 (except for 
et al., 1993a). This procedure leads to a bet ter finite-size convergence t h a n tha t 

using L x L systems. As a consequence, the = 1 result in Table 3 is somewhat 

more accurate t han tha t in (52). For a > 2 the calculations used 

with L at least up to 11. 

L x L systems 

are reproduced by the 

( 5 3 ) 



where 

(53). 
Apar t f rom the calculation of the rat io Q for the Ising model, we addressed the 

problem of the universality class for the non-interacting hard-square lattice-gas 
model (Baxter , Enting and Tsang , 1980). The absence or presence of a lattice-
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and the coefficients a i- are quoted in the last column 
of Table 3. Also, using power law fits in to the da t a for large aspect ratios, 
we have est imated tha t : 

which agrees with the value for the Gaussian distribution describing linear 
systems. 

gas particle at site i is expressed by a variable respectively. 

Denoting the activity of the gas particles as the part i t ion sum for the non-

The critical point invariant Q is plot ted in Fig. 8 on a semi-logarithmic scale 

versus the aspect rat io The smooth curve represents the polynomial fi t t ing 



where the product is over all pairs of nearest-neighbour sites, and guarantees 
tha t configurations with in terpenetra t ing particles do not contr ibute to Z. 

In absence of an exact solution, Baxter et al. (1980) applied series expansion 
techniques to determine the critical exponents of this model. They found tha t 
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interacting hard-square model (Baxter et al., 1980) is 

(54) 

the specific heat exponent = 0.09 ± 0.05 which was different f rom the exactly 
known value of the two-dimensional Ising model = 0. Subsequent analyses of 
the finite-size scaling behaviour of the t empera tu re derivative of the correlation 

length (Wood and Goldfinch, 1980; Racz, 1980) did not show significant devia-

tions f rom the Ising universality. However, we found the result by Baxter et al. 

(1980) sufficiently challenging to find more compelling numerical evidence tha t 

the hard-square model is inside the Ising universality class. 

On the basis of the result for the critical activity (Blöte and Wu, 1990) 

zc = 3.796255174(3), 

where the t ranslat ional symmetry of the model (54) is spontaneously broken, the 
series expansions evaluated by Baxter et al. (1980) can be reanalysed. 

Thus we consider (Kamieniarz and Blöte, 1993b) an expansion of the order 
parameter (i.e. the staggered density) R in terms of the high-density parameter 

x = 1/z. From the rat io analysis of R~8(x), using zc and the coefficients listed 

in Table II of Baxter et al. (1980) we have est imated t ha t the critical exponent 

= 0.1249(1), in agreement with Ising universality. 
The subsequent Dlog Padé analysis of the series R(x) (as t ha t in Table I 

of Baxter et al. (1980)) and the smooth dependence (Fig. 9) of the residues 
of ln_R(a:) on the distance of the corresponding poles f rom the critical value 
xc = 0.263417488 indicate t ha t does not differ f rom 1 /8 by more t h a n a few 

times 10 5. 
of the lattice-gas density the second derivative To calculate 

series is chosen which is more singular t han and can be found f rom the series 

where the coefficients are determined by those given 

in Appendix B of Baxter et al. (1980). Performing the Dlog analysis of the 
series (Kamieniarz et al., 1993b), we est imate = —0.1(1) which indicates t ha t 

may be smaller t han the result obtained by Baxter et al. (1980) f rom the 

series. The dependence of the est imates on the distance f rom the critical point 

is shown in Fig. 10. 
In Tables 4 and 5 our additional differential approximant analyses (Fisher 

and Au-Yang, 1979) of i T 1 and series are shown. The columns denoted 



F i g u r e 9: The residues of the D-log Pade approximants of the series R(x) versus the deviations 
of the corresponding poles from the critical value xc 
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N,L,M display the degrees of the corresponding polynomials. and rep-

resent the calculated unbiased critical parameters which are obtained and 

f rom the given approximants . Subscripts u and b denote the unbiased and biased 
(choosing = 0.264514, xc — 0.2634175) est imates of the corresponding critical 

exponents. The accuracy of the exponents depends strongly on the accuracy of 

the est imates However, the 6-exponents deviate f rom the Ising values and 

within a margin of 0.002 and 0.005 for and respectively (where we 

disregard the es t imate for the approximant [6,5,10]). 

In addition, we consider the lattice-gas model (54) on L x L and L x square 

lattices with periodic boundary conditions. To enable the introduct ion of two 

sublattices in a checkerboard-like fashion, L is restricted to be even. We use the 

t ransfer mat r ix technique (Kamieniarz et al., 1993b) in order to calculate the 

par t i t ion sum (54), as well as some of its derivatives. 

A finite-size analysis is used to determine yh and yt. Other exponents follow 

f rom these by means of scaling. Here, the main interest is in the value of y t 

in view of its relevance for expressed by = 2 — d/yt. The assumptions 



involved amount to the analyticity of renormalisation t ransformat ions employing 

an additional finite-size field (Barber , 1983) l / L with exponent yL= 1. 

We have determined finite-size da t a for several quantities: the density 

the lat t ice gas particles, the specific heat cL , the staggered susceptibility X L , and 
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the t empera tu re derivative of the inverse magnetic correlation length. They 

are expected (Kamieniarz et al., 1993b) to fulfil the finite-size scaling relations 

where d = 2 is the dimensionality and the terms with exponents p, r, q, w rep-

resent corrections to scaling. As an example, we show the results for a square 

system in Table 6. The scaling behaviour of all these d a t a is in an accurate 

agreement (Kamieniarz et al., 1993b) with Ising universal exponents. 

Another approach intimately related with renormalisation was made using 

the hypothesis of conformal invariance (Cardy, 1987). The t empera tu re and 

of 



magnetic exponents were determined using the relation (29) between exponents 
and the finite-size ampli tude of the associated correlation lengths for the infinite 
strips. The ensuing results (Kamieniarz et al., 1993b) 

yt = 1.000000(1), yh = 1.875000(1) 

are in precise agreement with the exactly known Ising values yh = 15 /8 and 

yt = 1. 
In addition to these results for the exponents, we have also found the critical 

density 

2 x pc = 0.73548600(1) 

and the universal critical point ra t io (Kamieniarz et al., 1993a) 

Q =< R2 >2 / < R4 >= 0 .85625(5) , 

the la t te r in agreement with the corresponding Ising value (52) for ferromagnet ic 

Ising models with periodic boundaries of the square symmetry. 

4.3 Quasi one-dimensional magnets 

Quasi-one-dimensional magnets have a t t rac ted a great deal of interest due to 

nonlinear spin dynamic effects and the recognition of the role of the spin value 

in the ground s ta te critical properties. An extensive account of the theoretical 

and experimental results can be found elsewhere (Mikeska and Steiner, 1991; 

Halperin, 1992). 
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First , we recall here the zero-field specific heat results for CHAB (i.e. the 
spin S = 1/2 compound C6H11NH3CuBr3). In Fig. 11 the dashed curve 
represents the experimental da ta , whereas our numerical est imates ( C a m p a n a et 

al., 1990) are given by solid circles. The vertical intercepts show the numerical 
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uncertainties for N 12 in our extrapolat ion procedure (34). 
In Fig. 12 the CHAB high-field specific-heat d a t a are depicted. The small 

symbols denoted by crosses and open and solid circles show the experimental 

excess specific heat C(T,B). The bigger crosses and solid circles with the 

error bars represent our est imates found f rom the polynomial fi t t ing (32). We 



F i g u r e 11: Zero-field specific heat of CHAB. The dashed curve represents the experimental 
results. Present theoretical results are shown by solid circles with error bars. 
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encountered a good convergence of the extrapolations for t empera tures T 10K, 
including the position of the peak for B = 3T and we found agreement with 

QTM predictions (Kopinga et al., 1990). 
The zero-field specific heat is also calculated for C 6 H 1 1 N H 3 C u C l 3 ( the S = 

compound abbreviated as CHAC) and is shown in Fig. 13. From the ferromag-

netic resonance experiment it has been established t ha t CHAC can be described 

be the anisotropic Heisenberg Hamiltonian with Jx/kB = 45.52 K, J y / k B = 

44.99 K and J z / K B = 44.49 K. In Fig. 13 the experimental curve is drawn in 

the solid line with a sharp peak corresponding to the phase transi t ion point to 

the three-dimensional (3D) ordering. Our results are marked by the circles and 

are consistent with the experimental findings down to 2K above the transi t ion 

tempera ture . An additional f i t t ing procedure for CHAC was carried out by 

Kopinga, Delica, Leschke and Riedel (1993). 

A considerable amount of experiments has been performed (Mikeska et al, 

1991) on CsNiF3, the spin S = 1 quasi-one-dimensional fer romagnet . The 

microscopic parameters 

of the Hamiltonian describing C s N i F 3 were first determined (Steiner, Villain and 

Windsor , 1976) by fi t t ing the observed energy spectra to the theoretical magnon 

(55) 



dispersion relation. Due to the discrepances between the theoretical predictions 

and the observed stat ic properties evidenced in numerical calculations, new fit-

t ing procedures were carried out by Delica, de Jonge, Kopinga, Leschke and 

Mikeska (1991) and C a m p a n a et al. (1992a) which led to the following sets of 

the parameters 
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and 

(56) 

(57) 

respectively. In bo th numerical procedures the values of g were fixed and only J 

and A were subject to variation. 

We found the competing predictions (55), (56), (57) together with a new 

SCHA approach (Cuccoli, Tognett i , Verrucchi and Vaia, 1992) challenging enough 

to s t a r t new large-scale simulations ( C a m p a n a et al., 1996) by recourse to the 

finite-size and QTM calculations. As the sets (55), (56), (57) were found f rom 

different fit t ing procedures and no significant experimental results have been 



F i g u r e 13: Zero-field specific heat of CHAC. The experimental data are plotted by the 
continous line and our estimates are displayed by the symbols. 

reported (to our knowledge) in the meantime, so t ha t we compared the predic-
tions following f rom these values of the parameters and we determined within 
the unique technique the opt imum set (57) with respect to s tat ic properties of 
CsNiF3. 

We star t presentation of our new results (Campana et al., 1996) f rom the 
This quanti ty displays a max imum in 

low tempera tures which is sensitive to the choice of parameters . Our numerical 
d a t a are given in Fig. 14 for sets (57), (56), (55), respectively and the results 
of measurements (Dupas and Renard, 1977) are depicted by full circles. For set 
(57) found in (Campana et al., 1992a), the agreement is excellent whereas some 
deviations of the order of 5-6% occur (Fig. 15) near the maximum if set (56) is 
used. Well pronounced discrepancy between experiment and simulations for set 
(55) appears in the entire t empera tu re region. 

The zero-field perpendicular susceptibility 
16 for the same parameters as before and using the same symbols as in Fig. 
14. In addition, dot ted curve in Fig. 16 illustrates the predictions of Cuccoli 
et al. (1992) The results of our simulations for 
with respect to the experimental da ta , of the order of 2%, irrespective of the 
parameter values. The values (56), (57) lead to an underest imation, whereas 
those in (55), to an overestimation. We also note t ha t the theoretical SCHA 
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zero-field longitudinal susceptibility 

d a t a are shown in Fig. 15 -

show systematic deviations 



85 



curve in Fig. 16 does not coincide with our predictions within the error of our 
simulations. 

In Fig. 17 we present the excess specific-heat da ta in the field 5 kGs. The 
corresponding experimental da t a (Ramirez and Wolf, 1985) are shown by full 

J / k B = —27 ± 3 K, D/J = 0.05, g = 2.23, (58) 
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circles and our results by symbols for parameter (55), (56), (57), re-
spectively. We also plot by the dotted curves the theoretical SCHA predictions 
as reported in (Cuccoli et al., 1992). Our findings for the excess specific-heat 
nearly coincide for parameters (56) and (57). We do not confirm the quanti-
tative agreement with experiment for parameters (55), although the deviations 
between our results and those of SCHA do not exceed 20%. 

In conclusion, the best agreement with static properties of CsNiF3 is reached 
for the parameter set (57). 

For the antiferromagnetic Haldane-gap system CsNiCl3, it has been es-
tablished from susceptibility and specific heat measurements (de Jongh and 
Miedema, 1974; Moses, Ehrenfreud, Makovsky and Shechter, 1977) tha t — J / k B = 

26 — 27 K. However, neutron-scattering experiments (Morra, Armstrong, Buyers 
and Hirakawa, 1988), performed in order to test the Haldane conjecture, have 
led to a somewhat higher value J /kB — —33.2 K. 

From our finite-size calculations (Campana, Caramico D'Auria, Esposito, 
Esposito and Kamieniarz, 1992b) we found the following set of parameters: 



F i g u r e 17 : The temperature dependence of the excess specific heat in molar units in the 
applied field B = 5 kGs. The experimental data are given by the full circles. The numerical 
data for different parameters are presented by the symbols explained in the labels. The SCHA 
predictions are plotted by the dotted curve. 

giving the best fit to the s ta t ic measurements . These values confirm the pre-

vious findings f rom the s ta t ic measurements (de Jongh et al., 1974; Moses et 

al, 1977). In part icular , our g value agrees very well with the one found f rom 

the ESR experiment (Achiwa, 1969). The slight anisotropy in the experimental 

susceptibility d a t a can be accounted for by a small anisotropy in g. 

The numerical results ( C a m p a n a et al., 1992b) for the zero-field specific heat 

of C s N i C l 3 are represented in Fig. 18 as the solid line, whereas the dot ted line 

gives the numerical results for J/kB = —33.2 K. The corresponding experimen-

ta l d a t a are represented by the circles. 

In Fig. 19 we plot our numerical predictions for the parallel susceptibility 
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) . The symbols represent ( to aviod an overlap, we skip our est imates for 
the experimental da ta : the open circles refer to and the triangles to . The 

dashed curve represents our results for using the value J / k B = —33.2 K, 

which underes t imate the expermental d a t a and deviate well above the uncer-

tainties in our extrapolat ions, denoted by the vertical error bars . These findings 

have been confirmed by our recent QTM calculations (Kamieniarz et al., 1996a). 

T h e Haldane-gap systems a t t r ac t a lot of interest (Halperin, 1992; Ramirez, 

Cheong and Kaplan, 1994) and new antiferromagnetic S = 1 chains are syn-

thetized (Gadet , Verdagner, Briois, Glezis, Renard, Beauoillain, Chapper t , Goto, 



F i g u r e 18: Specific heat of CsNiCl3. The open circles refer to experimental data. The 
finite-chain results for J/kB = —27 K and D/J = 0.05 are drawn by the solid line with error 
bars. The dotted line refers to J / k B = —33.2 K. 

F i g u r e 19: Susceptibility of CsNiCl3. Solid line: numerical data for J / k B = — 27 K and 
D/ J = 0.05. Dashed line: our data for J / k B = —33.2 K. Errors bars are shown by the 
intercepts. The symbols report the experimental data: the circles and the triangles 
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F i g u r e 2 0 : The temperature dependence of the isotropic susceptibility for the 5 = 1 antiferro-
magnetic Heise.nberg chain. The symbols illustrate the numerical data and the curve represents 
the high-temperature expansion results. 

Le Dang and Veillet, 1991; Darriet and Regnault , 1993). To help interpret 

the susceptibility measurements we calculated within QTM (Kamieniarz et al., 

1996a) the t empera tu re dependence of the susceptibility in the isotropic limit. 
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Our results are shown in Fig. 20 by the symbols. So far only h igh- temperature 

series expansion results of Weng (Weng, 1968) have been available and commonly 
used. The la t ter are drawn by the continuous line in Fig. 20. 

4.4 Spin-dynamics for the classical anisotropic chain 

Following Gerling et al. (1990), we have interpreted results of our simulations for 

the x and y polarizations of the neutron scattering laws for C s N i F 3 by recourse 

to the sine-Gordon theory (Allroth and Mikeska, 1981). The sine-Gordon theory 

restricts spins to the XY-plane, but on general grounds (Kakurai , Steiner and 

Dorner , 1990) we expect to see out-of-plane fluctuations which at least give rise 

to a single spin-wave peak with the Lorentzian line shape adopted. 
We considered (Grille et al, 1992) the spins as three-dimensional vectors of 



unit length and we chose 

Typically, the neutron scat ter ing laws found here are similar to those for the 

XY model (Gerling et al., 1990), al though the interpreta t ion is more difficult and 
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F i g u r e 2 1 : The spin-wave dispersion The temperatures for the simulation results (the 
magnetic field B = 1 T and the anisotropy A/ks = 9-0 K) and the experimental results are 
given in the label. A harmonic approximation and the sine-Gordon result are plotted by the 
solid line and the dashed line, respectively. 

not always unique. consists of a single narrow spin-wave peak, whereas 

The fi t t ing procedure, similar to t ha t of Gerling et al. (1990), leads to the 

following predictions (Grille et al., 1992). There exist out-of-plane f luctuat ions 

yielding well-defined spin-wave excitations. The spin-wave dispersion found from 

is presented in Fig. 21 for A/kB = 9 K and B = 1 T. Our results are 

reported by the symbols defined in Fig. 21. The experimental da ta , reported 

by asterisks, are taken after Steiner, Kakurai and Kjems (1983) in the region 
0.4 we have interpolated the results of Steiner and 0.4 whereas for qa qa 

Kjems (1977). The continuous curve is a harmonic approximation and the dashed 

line is the result of the sine-Gordon model. For low tempera tures and small wave 

develop a double-peak s t ructure . and 
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vectors q the agreement between the sine-Gordon theory, the computer simula-
tions and the experiments is quite good. However, the dispersion is thermally 
renormalised. For T = 4.7 K this renormalisation is of the order of 8 — 10% . 
This effect has usually been neglected (Kakurai et al., 1990; Steiner et al, 1977). 

In view of the interesting narrowing of zero-field in-plane spin-wave line 
widths observed experimentally (Kakurai et al., 1990) at 4.7 K, we present 
similar results for B = 1 T in Fig. 22. We find t ha t in the presence of the 
magnet ic field the narrowing cannot be observed as clearly as in experiments. 
The corresponding T-dependence of the y— and z—polarization linewidths is dis-
played in Fig. 23. Finally, in Fig. 24 we show the T-dependence of the widths 
of the central peaks for the y—polarization. 

The half widths of this soliton peak reveal serious disagreement with the 
sine-Gordon predictions depicted by the solid and dashed lines for 1 and 2 T, 
respectively. Our d a t a points show qualitatively different behaviour with respect 
to the sine-Gordon results. We a t t r ibu te these deviations to the strong out-of-
plane fluctuations. However, in low tempera tures the sine-Gordon theory is a 
reasonable s tar t ing point for the analysis of experimental results. For higher 
tempera tures the out-of-plane fluctuations must be included in the theory. 
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5 Conclusions 

In the area of phase transi t ions the precision of our simulation resul ts reached 
the s ix th decimal place. It was possible due to carefull selection of s imulation al-
gor i thms, good stat is t ics of t h e Monte Carlo d a t a and t h e use of an p e r t u r b a t i v e 
t rans fer m a t r i x approach, yielding directly the magnet izat ion moments . Impor-
tant w a s also the combination of different geometries, the a s y m p t o t i c finite-size 
scaling analysis and implementat ion of conformal invariance. 

High precision was also reached in the field of q u a n t u m spin chains down to 
low t e m p e r a t u r e s . Here the combination of of the QTM methods together wi th 
the direct finite-size diagonalization technique has been used. Large s y s t e m s 
(e.g. 200 x 14 for 5 = 1) were s imulated and carefull numerical analysis was 
applied. 

Some unresolved issues in the universal classification of phase t ransi t ions in 
the f r a m e w o r k of conformal field theory (Klümper and Pearce, 1993) and new 
challenging exper iments on mesoscopic magnet ic particles (Gatteschi, Caneschi, 
Pardi and Sessoli, 1994) considerably j u s t i f y f u r t h e r ef fort in s imulation of the 
low-dimensional m a g n e t s . 

T h e spin dynamics s t u d y of the classical Heisenberg f e r r o m a g n e t is only 
touched here in relation to the easy-plane chains modelling CsNiF3. However, 
t h e method is sui table for the dynamic s t u d y in higher dimensions (Landau, 
1994) and in other sys tems. 
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