
CMST 19(3) 145-155 (2013) DOI:10.12921/cmst.2013.19.03.145-155

Modularity and Regularity in Neural Networks
Produced with Assembler Encoding

T. Praczyk

Institute of Naval Weapon, Polish Naval Academy
81-103 Gdynia, ul. Śmidowicza 69
E-mail: t.praczyk@amw.gdynia.pl

Received: 18 February 2013; revised: 21 April 2013; accepted: 11 July 2013; published online: 5 September 2013

Abstract: The main focus of the paper is on the ability of the neuro-evolutionary method called Assembler Encoding to
repeatedly use the information included in a genotype and to construct modular and/or regular neural networks. It reports
experiments whose the main goal was to test whether the method is capable of adjusting topology of neural networks
to a modular and regular problem. In the experiments, the task of Assembler Encoding was to evolve neuro-controllers
responsible for balancing two or three inverted pendulums instaled on separate carts. Since both the carts and the pendulums
were identical the task of neuro-controllers could be performed by means of modular/regular neural networks.
Key words: artificial neural networks, evolution, modularity/regularity

I. INTRODUCTION

Artificial Neural Networks (ANNs) are used to solve wide
range of problems. They play more and more substantial and
responsible roles and solve more and more difficult problems.
Since to solve complex problems, appropriately sophisticated
tools are usually required, it is also necessary to apply proper
methods to build complex ANNs [20]. The neuro-evolution
is a technique that is more and more frequently used for
this purpose. So far, many neuro-evolutionary methods have
been proposed. Most of them are direct methods which store
topology and parameters of ANNs directly in chromosomes
(e.g. SANE [13], NEAT [24], ESP [7], CoSyNE [8], CM [12]).
The main drawback of such an approach is its poor scalabil-
ity. In the direct methods, complex ANNs require complex
chromosomes which could be a serious obstacle in generating
effective ANNs. An alternative class of neuro-evolutionary
methods are indirect methods whose genotypes do not include
parameters of ANNs but recipes how to create them.

Assembler Encoding (AE) presented in the paper is an ex-
ample of such a method [21]. AE originates from Cellular
Encoding (CE) [4, 5] and Edge Encoding (EE) [11], although,
it also has features common with Linear Genetic Program-
ming (LGP) presented, among other things, in [10, 15]. In AE,

an ANN is represented in the form of a program (Assem-
bler Encoding Program – AEP) whose structure is similar
to that of a simple assembler program. The task of AEP is
to create a Network Definition Matrix (NDM) containing all
the information necessary to produce an ANN. The process
of ANN construction consists of three stages. First, a Genetic
Algorithm (GA) is used to produce AEPs. Next, each AEP
creates and fills up NDM. Finally, NDM is transformed into
an ANN [20].

To date, AE has been tested on three different testing prob-
lems, i.e. the optimization problem [19], the predator-prey
problem [22, 23] and the inverted pendulum problem [21].
In all the tests, the method demonstrated fairly good effec-
tiveness. Noteworthy is the fact that it successfully competed
with different direct neuro-evolutionary methods and rein-
forcement learning methods in tasks of little or medium com-
plexity which rather prefer simpler solutions than AE [21].

However, the target application of AE is not to solve
simple problems but those with a greater complexity. Since
such problems are usually modular and have regularities,
solving them in an effective way requires from AE the abil-
ity to construct modular/regular neural architectures. Such
architectures can be built in two ways. When the structure
of a problem to be solved is known in advance it is also

146 T. Praczyk

known the high-level architecture of a neural solution to the
problem, i.e. the number of modules, connectivity between
modules, repetitiveness of modules. In AE, such knowledge
can be utilized by adjusting AEPs or NDMs to a problem.
In the former case, AEPs can operate exclusively on items
in NDM which correspond to elements of modular/regular
neural solution whereas in the latter one AEPs work with-
out any limitations, however, ANNs are constructed solely
based on items in NDM defining individual modules and
connectivity between modules. A more interesting case is,
however, when the structure of a problem to be solved is
unknown. In such a case, the only way is to use methods with
the ability to automatically decompose a problem and to form
modular/regular neural structures.

CE mentioned above is one of such methods which
was confirmed by experiments reported in [5]. During the
tests, neuro-controllers were generated, composed of sub-
controllers of similar structure, each of which was responsible
for its own task. Obtaining such an architecture of the con-
trollers was possible thanks to two things. First, CE represents
an ANN in the form of a tree-shape-program and provides
mechanisms for repeated use of the same fragment of code.
Second, the programs in CE directly operate on an ANN,
adding or removing from it neurons or connections. Combi-
nation of both elements is a base for modular/regular ANNs
to arise.

As already mentioned, AE originates from CE. It also rep-
resents an ANN in the form of a program and it also provides
tools for repeated execution of code. However, operations
from AEPs construct ANNs in an indirect way. They operate
not on ANNs, but on NDMs. In consequence, mechanisms
which enable CE to form modular/regular ANNs, in AE, may
be applied to construct modular/regular NDMs built with
repeated blocks of similar shape and content. The ability to
generate such matrices could be useful when solving complex
decomposable optimization problems in which a solution can
be represented in the form of a matrix. However, the question
is whether the same ability is also useful when the goal is to
create ANNs, not optimal matrices. Other important issues
requiring an answer are: whether mechanisms applied in AE
especially to obtain repetitiveness (regularity) in NDMs will
be used at all, whether usage of these mechanisms will really
cause modular/regular NDMs to be created, and how, if at
all, modularity/regularity in NDMs translates into modulari-
ty/regularity in ANNs.

To answer the above questions, experiments on the in-
verted pendulum problem were carried out. Like in Gruau’s
experiments reported in [5], the testing problem was con-
figured so that it was solvable by means of a single ANN
consisting of a number of separate sub-ANNs. In the experi-
ments, each ANN dealt with two or three poles installed on
separate wheeled carts. The task of each ANN was to protect
all the poles from falling down and to keep the carts within
track boundaries. Since all the poles and their carts were iden-

tical, the task could be solved by means of two or three the
same or similar sub-ANNs.

In the experiments, apart from AE, a classical neuro-
evolutionary method known as Connectivity Matrix (CM)
[12] was also applied. CM is a direct method which encodes
all parameters of an ANN in a single chromosome. The main
reason for using this method during the experiments was to
test how a technique which does not provide any tools to
create modular/regular ANNs is able to deal with the prob-
lem in which the most natural solution is a modular ANN
consisting of two or three separate sub-ANNs of the same or
similar structure.

The paper is organized as follows: section 2 is a short pre-
sentation of AE; section 3 is a description of AE mechanisms
that can be used to create modular/regular ANNs; section 4
is a report on the experiments; and section 5 is a conclusion.

0.3
 0.2
 0.3
 0.4

0.8
 1
 -0.5
-0.1

-0.6
 0.3
 -0.1
 0.6

IN

IN

IN

Oper. 0

Oper. 1

Oper. 2

Oper. 3

Memory

cell 0

Memory

cell 1

Memory

cell 2

Memory

cell 3

chromosomes
 AEP
 NDM

ANN

Fig. 1. Using AE to create ANN [22]

II. ASSEMBLER ENCODING FRAMEWORK

Since AE is widely described in [23], in this section only
an outline of the method is given. In AE, an ANN is repre-
sented in the form of a linear program (Assembler Encoding
Program – AEP) consisting of operations with predefined im-
plementations and data. The task of the AEP is to create a Net-
work Definition Matrix (NDM) defining a single ANN (see
Fig. 1). To form the AEP and, in consequence an ANN, Coop-
erative Co-Evolutionary Algorithm (CCEGA) [17, 18] is used.
CCEGA divides a solution into parts, each of which evolves
in a separate population. A complete solution is formed from
selected representatives of each population. In AE, an AEP
consisting of n operations and a sequence of data evolves in n
populations with operations and one population with data
(Fig. 2). During evolution, AEPs expand gradually. Initially,
all AEPs include one operation and a sequence of data. The
operations and the data come from two different populations.
When evolution stagnates, i.e. lack of progress in fitness is
observed over some period, the set of populations containing
the operations is enlarged by one population. This procedure
extends all AEPs by one operation [20].

Modularity and Regularity in Neural Networks Produced with Assembler Encoding 147

Population no. 2

Population including

data

Population no. 1

Code of

operation

Param

1

Param

2

Param

3

Param

4

Data

1

Data

2

Data

3

Data

4

Population no. 3

Code of

operation

Param

1

Param

2

Param

3

Param

4

Code of

operation

Param

1

Param

2

Param

3

Param

4

AEP

Oper. 1
 Oper. 2
 Oper. 3
 Data

individual

evaluated

the best

individual

the best

individual

the best

individual

Fig. 2. Evolution of AEPs for n = 3 [22] – three operations and one
sequence of data

In individual populations, the evolution proceeds accord-
ing to Canonical GA (CGA) [6]. Individuals from each popu-
lation (either the operations or the data) are encoded in the
form of binary strings. Each chromosome-operation includes
binary encoded parameters and optionally code of the oper-
ation (e.g. 01000|11000|01000|00000|00100 represents the
following operation: CHGC0|-1|1|0|2 - update of a fragment
of a column from NDM). Chromosomes-data are strings in-
cluding binary encoded data.

During evolution, each individual is combined with se-
lected individuals from the remaining populations to form
a complete AEP. The program produces a NDM and in conse-
quence an ANN which is then put to an evaluation test. The
result of the test is used to fix fitness for all components of the
AEP. After evaluation of all individuals from a population the
tournament selection is used to chose parental individuals for
reproduction. To form offspring individuals, the parental ones
are subject to three different genetic operators, i.e. one-point
crossover, mutation and the so-called cut-splice (changing
length of chromosome).

NDM stores all the information necessary to construct
a network. This information is included both in the size and
individual items of the matrix, scaled always to the range
< −1, 1 >. The size of NDM determines a maximum num-
ber of neurons in an ANN whereas individual items of the
matrix define weights of interneuron connections, i.e. an item
NDM[i, j] determines a link from neuron i to neuron j. Apart
from the basic part, NDM also contains additional columns
that describe parameters of neurons, e.g. type of neuron (e.g.
sigmoid, radial, linear), and bias.

III. MODULAR AND REGULAR ANNS IN AE

In the paper, a modular ANN is loosely understood as
an ANN segmented into modules, each of which is respon-
sible for a separate task. Such ANNs have been of a great
interest of scientists and practitioners for many years (e.g.
[2, 3, 9, 14, 16]). The cause of their popularity is that they
are usually the simplest solution to many technical problems
of a great complexity. Typically, the problems mentioned are
decomposable into sub-problems which are computationally

simpler to solve individually and whose solutions can be
combined to produce a solution to the entire problem. Such
problems are ideal area of application for modular ANNs
in which each module corresponds to a separate sub-problem.
A lower complexity of sub-problems causes ANNs composed
of interconnected modules to be usually simpler solution than
monolithic ANNs.

With regard to regularity, it applies to ANNs with rep-
etition or similarity of units. Like modularity, regularity is
also a very significant feature of ANNs. Since each repetition
in a regular ANN can be defined only once, representations
of such ANNs can be significantly smaller in volume then the
ANNs themselves. This is important when solving complex
problems with regularities. In this case, compact representa-
tions of ANNs significantly facilitate building effective neural
solutions.

When the units of an ANN are tightly integrated into a sin-
gle structure then we deal with a regular monolithic ANN.
In turn, an architecture with loosely connected repeated units,
each of which has its own function is both modular and regu-
lar. Such architectures can also be implemented in the neuro-
evolution. CE and EE mentioned in the previous section are
examples of methods which enable forming ANNs including
sub-ANNs of the same or similar structure. To this end, the
methods above allow the same fragment of a program mem-
orized in a chromosome-tree to be run many times. Since
operations from the program act directly on an ANN, their
repeated execution in different places of this ANN results
in an architecture with many the same sub-ANNs.

AE is a next method which also provides tools for build-
ing modular and regular neural architectures. However, in AE,
the way to accomplish such architectures is different from
that used in CE and EE. Since, in AE, ANNs are represented
in the form of NDMs, the only way to accomplish modular-
ity and/or regularity in ANNs is modularity and regularity
in NDMs. For example, in order for an ANN to include redun-
dancy, an NDM defining the ANN should contain the same
values replicated in different locations. To achieve such an ef-
fect, mechanisms are necessary which would enable AEPs to
repeatedly introduce the same values into NDMs.

The first method which can be used for that purpose is
a jump operation. Each jump makes it possible to repeatedly
use the same code of AEP in different places of NDM (details
of the jump are presented in [20]). A next solution which
enables AEPs to form modular/regular neural architectures is
repeated use of the same data by operations. When working
the operations often have to use the information placed in the
memory part of each AEP. Because the data are common for
all operations included in the same AEP, different operations
can use the same data. This means that the information con-
tained in the data part of AEP can be used many times to
alter various fragments of NDM. In effect, NDM can include
the same elements in many locations, which is the base for
modular/regular neural architectures to arise.

148 T. Praczyk

It is also possible to repeatedly use the same data by
a single operation, e.g. CHGM0 presented in Listing 1. The
task of this operation is to modify a fragment of NDM. Ele-
ments of the matrix are updated in columns, one after another,
starting from the element pointed by parameters p0 and p1.
The number of updated elements and a place in the memory
where new values for the elements are located are determined
in parameters p2 and p3. Generally, the operation can modify
all elements in NDM (see variable iterations, Listing 1).
To this end, the operation uses data from AEP. However, AEP
usually does not include enough data to assign a different
value to each element of NDM. In consequence, the operation
very often uses the same data many times. This is possible
thanks to the application of mod operator (see the last line
in CHGM0) [20].

Listing 1. Implementation of CHGM0
CHGM0(p0,p1,p2,p3)
{
rowInit=abs(p0);
columnInit=abs(p1)-1;
iterations=abs(p2)mod(NDM.width*NDM.height);
for(i=0;i<=iterations;i++){

sumRow=i mod NDM.height;
if(sumRow == 0)

columnInit++;
row=(rowInit+R1+sumRow)mod NDM.height;
column=(columnInit+R2)mod NDM.width;
NDM[row,column]=D[(abs(p3)+i)mod D.length]/MaxValue;}

}

In AE, modular/regular ANNs can also be established by
means of operations especially constructed for that purpose.
For example, to create an ANN with two the same neurons, it
is only enough to apply a special operation defining a single
neuron but in two different places of NDM. Introducing the
same values into many columns or rows is another example
of the operation specialized in producing modular/regular
ANNs. AE makes it also possible to easy form ANNs with
a predefined modular architecture, e.g. ANNs with a layered
organization. To obtain such ANNs, appropriately constructed
operations are only necessary. The task of each of them could
be to form a separate layer or module.

Generally, AE provides the whole range of mechanisms to
build ANNs consisting of many repeated components. Note-
worthy is the fact that such ANNs, may be theoretically
obtained by means of very simple AEPs. For example, to
produce an ANN with, say, three layers, an AEP with three
simple operations is sufficient (the task of each operation
would be to update elements in NDM which correspond to
weights of neurons included in the same layer). It seems that
achieving a similar effect by means of such methods as CE,
EE, and others based on tree-structured-chromosomes would
require applying more complex programs. However, in order
for AE to produce ANNs with repeated components, mecha-
nisms alone are insufficient. The method has to know how to
use them. To test the true ability of AE to create modular/reg-
ular ANNs, experiments were carried out whose results are
presented in the following section.

IV. EXPERIMENTS

The task of each ANN evolved during the experiments
was to control two or three carts with inverted pendulums.
Since both the carts and the pendulums were identical, to con-
trol them, neuro-controllers including two or three separate
sub-controllers of the same structure seemed to be the most
natural. However, the information about preferred topology
of neuro-controllers were not accessible to the method build-
ing ANNs. There were not any hints suggesting which ANNs
should be built and which should not. Thereby, ANNs of any
topology could appear during the experiments. The problem
was, however, whether AE is able to pick an ANN with a spe-
cific modular and regular architecture out from many other
possible neural solutions. Types of possible modules/units
(neurons, sub-ANNs) and their size (number of NDM cells
necessary to define a module/unit) were other important un-
knowns during the tests.

Selection of a testing problem to measure the ability of AE
to produce modular/regular ANNs was dictated by simplicity
of analysis of neural solutions in terms of their modularity
and regularity. During the experiments, only ANNs which in-
cluded at least one separate sub-ANN to control a single cart
were recognized to be modular. This means that in order for
a unit of an ANN to be a module it had to be completely sep-
arated from the rest of the ANN and it had to be responsible
for controlling its own cart. Regularity in ANNs was mea-
sured through analysis of repetitiveness in NDMs. Each ANN
whose NDM included repeated elements was recognized to
be regular. For an ANN to be both modular and regular it had
to have separated modules repeated in NDM at least twice.

1
.
0
3
.
0
5
.
0
1
.
0
2
.
0
8
.
0
5
.
0
4
.
0

2
.
0
4
.
0
7
.
0
6
.
0
9
.
0
4
.
0
2
.
0
5
.
0

1
.
0
9
.
0
5
.
0
3
.
0
2
.
0
6
.
0
6
.
0
6
.
0

5
.
0
5
.
0
1
.
0
7
.
0
7
.
0
2
.
0
2
.
0
9
.
0

4
.
0
2
.
0
4
.
0
9
.
0
8
.
0
4
.
0
2
.
0
3
.
0

Population including

encoded CMs

Connectivity

Matrix

-0.2
 0.4
 0.8
 ...
 ...
 ...
 ...
 ...

IN

IN

IN

ANN

Fig. 3. Evolution of ANNs in CM (evolving elements of CM are
enclosed – each chromosome encodes a single ANN and it includes
all parameters necessary to build the network; evolution proceeds

in a single population, to evolve ANNs Canonical GA is used)

In the experiments, apart from AE, CM was also tested.
The main reason for using this method was the need to have

Modularity and Regularity in Neural Networks Produced with Assembler Encoding 149

a point of reference for AE. Since CM, in contrast to AE, does
not provide any tools for creating architectures with repeated
units, using this method in the experiments allowed us to
answer the question whether the mechanisms used in AE to
create the above architectures are effective and whether AE
can effectively use these mechanisms. Parameters of both AE
and CM are given in Tab. 2.

Of course, CE and EE, i.e. the methods which like AE
support modularity in ANNs, would be the best point of ref-
erence for AE. However, implementations of the above meth-
ods were inaccessible during the experiments which in effect
made comparison between them and AE impossible.

IV. 1. Inverted pendulum problem

In the classic variant of the inverted pendulum problem,
we deal with a wheeled cart moving on a finite length track
and with a pole installed on the cart. In the problem, the task
is to indefinitely balance the pole and to keep the cart within
track boundaries. To accomplish the task, the cart is pushed
left or right with some fixed force. The decision about the
direction and the strength of movement is made based on the
information about the state of the cart-and-pole system. The
state vector includes such parameters as: the position of the
cart (x), the velocity of the cart (ẋ), the angle of the pole
(θ), and the angular velocity of the pole (θ̇). To model the
behavior of the cart-and-pole system the following equations
can be used [8]:

ẍ =
F − µc(ẋ) +

∑N
i=1 F̃i

M +
∑N

i=0 m̃i

(1)

θ̈i = − 3

4li

(
ẍ cos θi + g sin θi +

µpiθ̇i
mili

)
, (2)

where
ẍ – is acceleration of cart
θ̈i – is acceleration of ith pole
F – is force put to cart
M – is mass of cart
mi – is mass of ith pole
li – is half length of ith pole
µc – is coefficient of friction of cart on track
µpi -is coefficient of friction of ith pole’s hinge
g – is gravity

F̃i = miliθ
2
i sin θi +

3

4
mi cos θi

(
µpiθ̇i
mili

+ g sin θi

)
(3)

m̃i = mi

(
1− 3

4
cos2 θi

)
(4)

The equations above are used to calculate the state param-
eters of the cart-and-pole system. The calculations can be
performed by means of Euler’s method:

x = x+ tẋ (5)

ẋ = ẋ+ tẍ (6)

θ = θ + tθ̇ (7)

θ̇ = θ̇ + tθ̈ (8)

where t is a step size. Values of the parameters above, (in
the experiments, values of all the parameters were scaled to
<-1,1>) fixed at each time step, i.e. every t seconds, are used
by a neuro-controller, to determine a direction and a strength
of a next move. Each decision of a neuro-controller causes
the cart-and-pole system to be transitioned to a next state
described by other values of state parameters. This procedure
is repeated until the pole falls down, the cart accomplishes the
end of the track, or the pole is balanced over some assumed
number of steps (in the experiments 100000 steps).

In the experiments reported further, ANNs dealt with
an extended version of the classic variant of the inverted pen-
dulum problem described above. The task of each ANN was
not to control a single cart-and-pole system as is in the classic
variant but to move two or three carts with their pendulums.
In consequence, ANNs had the following architecture:

1. Two cart-and-pole systems (8 inputs, 4 hidden units,
and 2 outputs – inputs: x1, ẋ1, θ1, θ̇1, x2, ẋ2, θ2, θ̇2 out-
puts: F1, F2).

2. Three cart-and-pole systems (12 inputs,
4 hidden units, and 3 outputs – inputs:
x1, ẋ1, θ1, θ̇1, x2, ẋ2, θ2, θ̇2, x3, ẋ3, θ3, θ̇3 outputs:
F1, F2, F3).

IV. 2. Experimental results

ANNs evolved during the tests were primarily examined
in terms of their modularity and regularity. ANNs could be
modular, regular, modular and regular or none of them. More-
over, ANNs were also analyzed in terms of type and size
of repeated units. The goal of this analysis was to test whether
AE is able to evolve ANNs with large-scale regularities, i.e.
with repeated sub-ANNs or at least neurons. In order for such
ANNs to evolve, it was necessary to fill in a few disjoint
fragments of NDM in the same way which was a serious
challenge for AEPs. Generally, the following types of units
were looked for in ANNs (see Fig. 4):

• output connections (OC units),
• input connections (IC units),
• neurons (N units),
• sub-ANNs (sANN units, it was assumed that such units

have to include at least two neurons).
The experiments were carried out in two phases. In the

first phase, the task of ANNs was to control two carts with
inverted pendulums. The second phase was more difficult.
In this phase, instead of balancing two poles, ANNs dealt
with three poles. To create ANNs, regardless of the phase,
AEPs consisting of only two operations were used (the list

150 T. Praczyk

Tab. 1. Parameter settings for each cart-and-pole system [8]

Param. Description Parameter value

l length of pole 0.5m

m mass of pole 0.1kg

θ angle of pole (-12,12) deg.

failure angle (pole is considered to be fallen down) ±12 deg.

x position of cart (-2.4,2.4)m

failure position of cart (cart is outside track) ±2.4m

M mass of cart 1kg

F force applied to cart <-10,10>N but no less than ±1/256x10 N

g gravity 9.8m/s2

µc coefficient of friction of cart on track 0.0005

µp coefficient of friction of i-th pole’s hinge 0.000002

t step size (cart is moved every t seconds) 0.02s

maximal number of steps pole remained balanced 100000

IN
 IN

IN

IN

w

2

NDM

w

3

w

4

w

2

w

3

w

4

OC(3)

IN

w

1

w

2

w

3

w

4

copy 1

copy 1

copy 2

(a) OC unit of size 3

IN

w

2

NDM

w

3

w

4

w

2

w

3

w

4

IC(3)

w

1

copy 1

w

2

w

3

w

4

copy 1

copy 2

(b) IC unit of size 3

w

2

NDM

w

3

w

4

w

2

w

3

w

4

N(5)

w

0

w

0

p

w

i

,
p
)
f(

w

1

w

2

w

3

w

4

w

0

p

copy 1

copy 1

copy 2

copy 1

copy 2

(c) N unit of size 5

w

1

k

NDM

sANN(8)

w

0

k

p

n

w

0

n

w

2

k

w

3

k

w

3

n

w

2

n

w

1

n

p

k

w

0

k

w

0

n

w

1

n

w

2

n
 w

2

k

w

3

k

w

i

n
,
p

n

)
f(

w

i

k
,
p

k

)
f(

w

1

n

w

2

n
 w

2

k

w

3

k

p

n

p

k

w

0

k

w

0

n

copy 1

copy 1

copy 1

copy 2

copy 2

(d) sANN unit of size 8

Fig. 4. Example modules and their representation in NDM (in brackets next to labels of units the size of each unit is given, parameters
included in rectangles repeatedly appear in NDMs and in consequence in ANNs)

Modularity and Regularity in Neural Networks Produced with Assembler Encoding 151

Tab. 2. Parameters of AE and CM used in experiments

Parameter AE CM

no. of subpopulations 3 (operation1, operation2 and data) 1

size of subpopulations 60 (data), 20 (operations) 100

evals per generation 100 100

no. of data 10..20

size of ANNs (hidden units) maximally 4 maximally 4

size of tournament 1 (data), 4 (operations) or 1 (data), 2 (operations) 2 or 4

crossover probability 0.7 in all three populations 0.7

mutation probability 0.04 (data), 0.1 (oper.) or 0.04 (data), 0.05 (oper.) 0.01 or 0.05

of all operations available to AEPs is given in Appendix).
In the experiments in both phases, AE as well as CM were
run 100 times, i.e. in each phase 100 ANNs were built for
each method (each run was represented by the best ANN
produced in the run).

Since the main goal of the experiments was not to find
effective ANNs as quickly as possible but to test the ability
of AE and CM to form modular/regular ANNs, both methods
were not tuned to the task and all the tests were carried out
for a parameter setting, the most effective in the previous
experiments [21].

IV. 2. 1. Two cart-and-pole systems

Each ANN created in this part of the experiments was
evaluated eight times, i.e. eight balance attempts were per-
formed for each of them. All the attempts differed in initial
positions of the poles: (θ1[deg],θ2[deg])=(4,4), (4,-4), (-4,4),
(-4,-4), (8,8), (8,-8), (-8,8), (-8,-8). Initial values for the re-
maining parameters in both cart-and-pole systems were the
same during each attempt, i.e. x1=0 m, ẋ1=0 m/s, θ̇1=0 deg/s,
x2=0 m, ẋ2=0 m/s, θ̇2=0 deg/s. The fitness for each ANN was
determined by the total number of steps the pole remained
balanced in all the attempts. When in a single attempt the pole
was up for 100000 time steps, the attempt was interrupted.

All the analysis presented below was made on ANNs which
successfully protected the pole from falling down in all the
eight attempts.

Before the experiments, the most natural solution to the
problem with two the same cart-and-pole systems seemed
to be a controller consisting of two separate copies of the
same sub-controller. The experiments showed something else.
A massive majority of ANNs produced with AE (92%) con-
sisted of two different output neurons. Besides, densely con-
nected neural architectures including usually a maximum
acceptable number of neurons (see Tab. 2) were also created:
CM – 100% of ANNs, AE – 8% of ANNs.

As for ANNs with two output neurons, their architecture
seems to mainly arise from differences in initial positions
of the poles. Since each pole started from a different posi-
tion, the problem which had to solve ANNs was portioned
into two different sub-problems, each of which was solved
by means of a different neuron. Noteworthy is the fact that
in spite of many other architectures which could be used to
solve the problem, and in spite of the ability of AE to form
these architectures, the method suggested exactly such a sim-
ple modular solution. As it turned out CM was unable to do
the same.

Most ANNs with two output neurons (94%), in addition

out
IN

out
IN

1

x

2

x

2

x

OC-1(2)

OC-1(2)

copy 1

copy 2

(a) two copies of OC unit of size 2

1

x

2

x

2

x

1

x

out
IN

out
IN

OC-1(2)

copy 1

OC-1(2)

copy 2

OC-2(2)

copy 1

OC-2(2)

copy 2

(b) two OC units of size 2, each with two copies

Fig. 5. Examples of typical ANNs created by means of AE in the experiments with two cart-and-pole systems

152 T. Praczyk

to heterogeneous modules, included also replicated OC units
of size 2. In most cases, the ANNs contained only one pair
of such units (Fig. 6(a)) although there were also cases with
two pairs (Fig. 6(b)).

As mentioned above, the remaining ANNs produced
with AE were densely connected and usually included the
maximum acceptable number of neurons. Such construction
of ANNs created favorable conditions for many replicated
units of different size to arise. sANN units containing two
or three neurons were the greatest of them. Usually, a sin-
gle ANN included many different units of varied size. Very
often, the units overlapped with the result that ANNs were
decomposable into units in many different ways (Fig. 6).

out

out

copy 2

copy 1

sANN-1(30)

sANN-1(30)

all

eight

inputs

(a) two copies of sANN unit of size 30

out

out

copy 2

copy 1

all

eight

inputs

sANN-1(18)

sANN-1(18)

IC-1(5)

IC-1(5)

copy 1

copy 2

(b) two copies of sANN unit of size 18 and two copies of IC
unit of size 5

Fig. 6. Two example ways to decompose the same ANN into units

In contrast to ANNs generated by means of AE, the ones
evolving as CMs did not include any modules and replicated
units of size larger than 2 (Tab. 4). What is more, the number
of ANNs with the units was very small (12%). Noteworthy is
the fact that, in the case of AE, the architectures with many
neurons and connections included many repetitions of units
of different size. Meanwhile, ANNs created by means of CM,
in most cases, included no units.

Tab. 3. Modular, regular and modular and regular ANNs in first
phase of experiments

Modular Regular Modular and Regular None

AE 6% 8% 86% 0%

CM 0% 12% 0% 88%

Tab. 4. Type and size of units in first phase of experiments

Types of units Size of units

OC IC N sANN Max Min Average

AE
√ √ √ √

35 2 3.1

CM
√ √

X X 2 2 2

IV. 2. 2. Three cart-and-pole systems

The experiments with three cart-and-pole systems were
carried out in the same conditions as the ones with two sys-
tems. The number of evaluations of each ANN, parameters
of the systems, and the method for calculating fitness were
identical as in the previous case. The only new element was
the third cart. Since in the previous experiments we did not
obtain any ANN consisting of the same, separate sub-ANNs,
in the currently presented experiments, we decided to encour-
age AE to build such architectures by setting the additional
pole (the third pole) in the same initial position as the first
pole. The starting position of the second pole was as before.

Tab. 5. Modular, regular and modular and regular ANNs in second
phase of experiments

Modular Regular Modular and Regular None

AE 0% 32% 65% 3%

CM 0% 5% 0% 95%

During the tests, it turned out that all AEPs produce ANNs
with a very similar architecture. Again, the modular archi-
tecture with only output neurons appeared to be dominant.
In all the experiments at this stage, AEPs generated only
a few ANNs with hidden neurons. The characteristic of most
ANNs produced with AE was also significant similarity or
in many cases even identicalness of neurons responsible for
controlling the systems staring from the same initial posi-
tion (Fig. 7).

The architecture of ANNs affected types of modules/units
contained therein. Again, it is necessary to take notice of the
fact that in spite of many other feasible neural solutions, most
ANNs produced with AE (65%) consisted of three separate
modules, including one N module in two copies and one mod-
ule without replication. In addition to repeated N modules,
repeated IC units were also a frequent case (they occurred
in 30% of ANNs). They usually played a similar role as the
N modules mentioned above, i.e. they were responsible for
the cart-and-pole systems starting with the same initial posi-
tion. In contrast to the N modules and IC units, repeated OC
units were very rare. They appeared in 2% of ANNs, typi-
cally, together with IC units. In the experiments, there were
also ANNs without any repeated units. However, the number
of such ANNs was very small – 3% (as in the previous case,
ANNs produced with CM were exceptional in this respect).

Modularity and Regularity in Neural Networks Produced with Assembler Encoding 153

out

out

IN

out

N-1(7)

copy 1

N-1(7)

copy 2

(a) two copies of N module of size 7

out

out

IN

out

N-1(11)

copy 1

N-1(11)

copy 2

IN

(b) two copies of N module of size 11

Fig. 7. Examples of typical ANNs created during experiments with
three cart-and-pole systems

Tab. 6. Type and size of units in second phase of experiments

Types of modules Size of modules

OC IC N sANN Max Min Average

AE
√ √ √

X 11 2 3.4

CM
√ √

X X 2 2 2

With regard to the size of repeated modules/units (Tab. 6),
although most of them were of size 3 or 4, the modules/units
of larger size (e.g. 11, 10, 8 or 7) were also generated (see
Fig. 7). Generally, the repeated units from this part of the
experiments were of larger size than those generated previ-
ously. There were, however, no units as large in size as the
largest units evolved in the prior stage of the experiments.
Previously, the largest replicated units were always a part
of densely connected ANNs with many neurons. Since this
time, all ANNs were smaller in size than the largest ANNs
produced previously, such units had no chance to arise.

With regard to ANNs evolving as CMs, the results were
almost the same as in the previous case. That is, all the ANNs
were fully-connected with the maximum acceptable number
of neurons, and in total, they included only a few repeated IC
and OC units of size at most 2.

V. CONCLUSION

The paper reports the experiments whose the main goal
was to test whether AE is able to adjust the architecture
of evolved neural solutions to a modular and regular problem.
During the tests, it appeared that massive majority of ANNs

have the architecture ideally suited to a problem to be solved.
They included two or three separated output modules, each
of which was responsible for its own cart-and-pole-system.
Noteworthy is the fact that even though AE enables form-
ing ANNs with any structure, in the experiments, very sim-
ple modular and regular architectures were mostly produced.
Modules and repeated units were of varied size and type.
In addition to small size modules and units, more complex
ones were also noticed. The emergence of larger repeated
units should be particularly emphasized because it may be
a symptom that AE is able to produce complex ANNs with no
less complex repeated sub-ANNs. Of course, to test whether
AE really displays such abilities, further experiments are
necessary.

CM which like AE has the ability to produce diverse
ANNs in terms of the architecture could not achieve a similar
result. All ANNs constructed with CM were not adjusted to
a task, were fully-connected and included a maximum num-
ber of neurons. In all the experiments, the method was unable
to propose any other effective architecture. It seems, however,
that troubles of CM with producing an appropriate architec-
ture also involve other direct methods. Each direct method
strives to attach a value to each parameter of an ANN included
in a genotype. To remove an element from the ANN, e.g.
a connection, an appropriate gene has to be set to zero. Since
the value zero is only one out of many other possibilities, it is
very difficult to obtain any other architecture of an ANN than
the maximum architecture memorized in a genotype. There-
fore, it seems that the direct methods are the most suited
for the problems with topology of ANNs known beforehand.
In other situations, the indirect methods, like AE, appear to
be a valuable alternative.

APPENDIX
List of operations used in the experiments

CHGFF – update of the fragment of NDM above the diagonal.
New values for the elements of the matrix are located in the
data part of AEP.
CHGC0 – update of a fragment of column in NDM
CHGR0 – update of a fragment of row in NDM
CHGM0 – Listing 1
CHGM1 – like CHGM0, the difference is that all the updated
elements have the same value.
CHGRR0(CHGCC0) – like CHGR0(CHGC0), the main differ-
ence is that CHGR0(CHGC0) updates elements in a single
row (column) of NDM whereas CHGRR0(CHGCC0) operates
in two adjacent rows (columns).
CHGRR1 (CHGCC1) – like CHGRR0(CHGCC0), however,
CHGRR1 (CHGCC1) works in rows (columns) that are not
adjacent.
CHGRR2(CHGCC2) – modification of more than two rows
(columns).

154 T. Praczyk

CHGMM0 – like CHGM0, however CHGMM0 works in two ad-
jacent blocks of NDM.
CHGMM1 – a variety of CHGMM0 in which modified blocks
can be apart.
CHGMM2 – like CHGMM0, the only difference between the
operations is an order in which elements of NDM are up-
dated. In CHGMM0, elements are modified in rows whereas
in CHGMM2 they are changed in columns.
JMP1 – a form of JMP in which the maximum number of it-
erations is restricted to four.

References

[1] K. Balakrishnan, V. Honavar, Properties of Genetic Represen-
tations of Neural Architectures, Proc. of the World Congress
on Neural Networks (WCNN’95), 807-813, (1995).

[2] R. Calabretta, Genetic Interference reduces the evolvability
of modular and non-modular visual neural networks, Phil.
Trans. R. Soc. B 362, 403-410, doi:10.1098/rstb.2006.1967
(2007).

[3] S. Cho, K. Shimohara, Evolutionary Learning of Modular
Neural Networks with Genetic Programming, Applied Intelli-
gence 9, 191-200 (1998).

[4] F. Gruau, Neural network Synthesis Using Cellular Encod-
ing And The Genetic Algorithm, PhD Thesis, Ecole Normale
Superieure de Lyon (1994).

[5] F. Gruau, Automatic Definition of Modular Neural Networks,
Adaptive Behavior 3, Issue 2, 151-183 (1994).

[6] D.E. Goldberg, Genetic algorithms in search, optimization and
machine learning, Addison Wesley, Reading, Massachusetts,
(1989).

[7] F. Gomez, R. Miikkulainen, Incremental evolution of complex
general behavior, Adaptive Behavior, 5, 317-342 (1997).

[8] F. Gomez, J. Schmidhuber, R. Miikkulainen, Accelerated Neu-
ral Evolution through Cooperatively Coevolved Synapses,
Journal of Machine Learning Research, 9, 937-965 (2008).

[9] V.R. Khare, X. Yao, B. Sendhoff, Y. Jin, H. Wers-
ing, Co-evolutionary Modular Neural Networks for Au-
tomatic Problem Decomposition, in Proc. of The 2005
IEEE Congress on Evolutionary Computation, 3, 2691-2698,
doi:10.1109/CEC.2005.1555032 (2005).

[10] K. Krawiec, B. Bhanu, Visual Learning by Coevolutionary
Feature Synthesis, IEEE Trans. on Systems, Man, and Cyber-
netics, Part B: Cybernetics. 35, 409-425 (2005).

[11] S. Luke and L. Spector, Evolving Graphs and Networks with
Edge Encoding: Preliminary Report, In John R. Koza, ed.,
Late Breaking Papers at the Genetic Programming 1996 Con-
ference, (Stanford University, CA, USA, Stanford Bookstore,
1996) 117-124.

[12] G.F. Miller, P.M. Todd, S.U. Hegde, Designing Neural Net-
works Using Genetic Algorithms, Proceedings of the Third
International Conference on Genetic Algorithms. 379-384.
of Schaffer J.D. (1989).

[13] D.E. Moriarty, Symbiotic Evolution of Neural Networks in Se-
quential Decision Tasks, PhD thesis, The University of Texas
at Austin, TR UT-AI97-257 (1997).

[14] J. Mouret, S. Doncieux, Evolving modular neural-networks
through exaptation, Proc. of the Eleventh Conf. on Congress
on Evolutionary Computation, 1570-1577 (2009).

[15] P. Nordin, W. Banzhaf, F. Francone, Efficient Evolution of Ma-
chine Code for CISC Architectures using Blocks and Homolo-
gous Crossover, Advances in Genetic Programming III, MIT
Press, L. Spector and W. Langdon and U. O’Reilly and P.
Angeline, pages. 275-299 (1999).

[16] N. NourAshrafoddin, A.R. Vahdat, M.M. Ebadzadeh, Auto-
matic Design of Modular Neural Networks Using Genetic
Programming, Proc. of the 17th International Conference on
Artificial Neural Networks, 788-798 (2007).

[17] M. Potter, The Design and Analysis of a Computational Model
of Cooperative Coevolution, PhD thesis, George Mason Uni-
versity, Fairfax, Virginia (1997).

[18] M.A. Potter, K.A. De Jong, Cooperative coevolution: An archi-
tecture for evolving coadapted subcomponents, Evolutionary
Computation, 8(1), 1-29 (2000).

[19] T. Praczyk, Evolving co–adapted subcomponents in Assem-
bler Encoding, International Journal of Applied Mathematics
and Computer Science, 17(4) (2007).

[20] T. Praczyk, Modular networks in Assembler Encoding, Com-
putational Methods in Science and Technology, CMST 14(1),
27-38 (2008).

[21] T. Praczyk, Using assembler encoding to solve inverted pendu-
lum problem, Computing and Informatics 28, 895-912 (2009).

[22] T. Praczyk, Forming Neural Networks by Means of Assembler
Encoding, Intelligent Automation and Soft Computing 17, no.
3, 319-331 (2011).

[23] T. Praczyk, Assembler Encoding Improved, CMST 18(1), 11-
24, (2012).

[24] O. Stanley, Efficient Evolution of Neural Networks Through
Complexification, PhD thesis, Department of Computer Sci-
ence, The University of Texas at Austin, Technical Report
AI-TR-04-314 (2004).

Modularity and Regularity in Neural Networks Produced with Assembler Encoding 155

Tomasz Praczyk is a senior lecturer at the Institute of Naval Weapon of Polish Naval
Academy in Gdynia. He received his MSc degree in computer science in 1996. In 2001,
he received his PhD degree; with thesis focused on using artificial neural networks to
identify ships. His research interest is in neuro-evolution, artificial immune systems,
and reinforcement learning.

CMST 19(3) 145-155 (2013) DOI:10.12921/cmst.2013.19.03.145-155

