GET_pdf delibra

Volume 4 (1) 1998, 25-33

THEORETICAL SOLVATION MODELS: AB INITIO STUDY OF MOLECULAR AGGREGATION

Szarecka Agnieszka 1, Rychlewski Jacek 1, Rychlewska Urszula 2

1 Quantum Chemistry Group, Faculty of Chemistry Adam Mickiewicz University
Grunwaldzka 6, 60-780 Poznań, Poland
szarecka@man.poznan.pl. rychlew@man.poznan.pl
2 Department of Crystallography, Faculty of Chemistry Adam Mickiewicz University
Grunwaldzka 6, 60-780 Poznań, Poland

DOI:   10.12921/cmst.1998.04.01.25-33

OAI:   oai:lib.psnc.pl:489

Abstract:

The results of a comparative ab initio study of solvation effects in a process of hydrogen bond driven dimerisation of two small organic molecules – formamide and a primary amide of the α-hydroxyacetic acid are here presented. Differences between various dielectric continuum models (i.e. Onsager, PCM, IPCM and SCIPCM), their performance and range of applicability are reported and discussed.

References:

[1] B.Ya. Simkin, I.I. Sheikhet Quantum Chemical and Statistical Theory of Solutions: a Computational Approach Ed. T. J. Kemp, Ellis Horwood Ltd. 1995.
[2] a) A. Gavezzotti, G. Filippini, Chem. Commun. 278; (1998) b) A. Gavezzotti, G. Filippini, J. Kroon, B. P. van Eijck, P. Klewinghaus, Chem. Eur. J. 3, 893 (1997); c) N. Blagden, R. J. Davey, H. F. Lieberman, L. Williams, R. Payne, R. Roberts, R. Rowe, R. Docheity, J. Chem. Soc. Faraday Trans. 94, 1035 (1998).
[3] J. P. Hansen, I. R. McDonald Theory of Simple Liqiuds, Academic Press, Harcourt Brace Jovanovich 1986.
[4] P. Claverie, J. P. Daudey, J. Langlet, B. Pullman, D. Piazzola, J. Phys. Chem. 82, 405 (1978).
[5] G. W. Schnuelle, D. L. Beveridge, J. Phys. Chem. 79, 2566 (1975).
[6] M. P. Allen, D. J. Tildesiey Computer Simulation of Liquids, Clarendon Press, Oxford 1996.
[7] A. R. Leech Molecular Modelling Principles and Applications Addison Wesley Longman Ltd.,
London 1996.
[8] L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936).
[9] M. W. Wong, M. J. Frisch, K. B. Wiberg, J. Am. Chem. Soc. 113, 4776 (1991).
[10] S. Miertus, E. Scrocco, J.’Tomasi, Chem. Phys. 55, 117 (1981).
[11] S. Miertus, J. Tomasi, Chem. Phys. 65, 239 (1982).
[12] J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, M. J. Frisch, J. Phys. Chem. 100, 16098
(1996).
[13] A. Szarecka, U. Rychlewska, J. Rychlewski, J. Mol. Struct, in press.
[14] A. Szarecka, J. Rychlewski, U. Rychlewska, Progress in Theoretical Chemistry, in press.
[15] a) M.W. Wong, M. Frisch, J. Chem. Phys. 95, 8991 (1991); b) O. Tapia, O. Goscinski, Mol. Phys. 29, 1653 (1975).
[16] M. W. Wong, K. B. Wiberg, M. J. Frisch J. Am. Chem. Soc. 92, 523 and 1645 (1992).
[17] Gaussian94 (Revision D.l), M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G.
Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Patersson, J. A. Montgomery, K.
Raghavachari, M. A. Al.-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B.
Stefanow, A. Nanayakkara, M. Challacombe, C. Y. Peng,, P. Y. Ayala, W. Chen, M. W. Wong, J.
L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin. D. J. Fox, J. S. Binkley, D. J. Defrees, J.
Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1995.
[18] Pople, J. A.; Beveridge, D. L.; Approximate Molecular Orbital Theory, McGraw-Hill; New York, 1970.
[19] Clark T„ Chandrasekhar J., Spitznagel G. W., Schlayer von P. R. (1983) J. Comput. Chem. 4,
294.
[20] a) M. J. Frisch, J. A. Pople, J. S. Binkley J. Chem. Phys. 80, 3265; (1984) b) R. Krishnan, J. S.
Binkley, R. Seeger, J. A. Pople J. Chem. Phys. 80, 3265 (1980); c) M. W. Wong, M. J. Frisch, K.
B. Wiberg, J. Am. Chem. Soc. 113, 4776 (1991).
[21] a) Gaussian94 User’s Guide; b) J. B. Frisch, A. Frisch, Exploring Chemistry with Electronic Structure Methods, Sec. Edition, Gaussian, Inc. Pittsburgh, PA, 1996.