GET_pdf delibra

Volume 10 (1) 2004, 47-56

THEORETICAL AND EXPERIMENTAL 1H AND 13C NMR SPECTRA OF 3-HYDROXYPYRIDINE, 3-METHOXYPYRIDINE, AND N-ETHYL-3-OXYPYRIDINIUM BETAINE*

Komasa Jacek, Szafran Mirosław

Faculty of Chemistry, A. Mickiewicz University, 60-780 Poznań, Poland

Received:

Rec. 27 March 2004

DOI:   10.12921/cmst.2004.10.01.47-56

OAI:   oai:lib.psnc.pl:559

Abstract:

1H and 13C NMR chemical shifts for neutral (3-hydroxypyridine and 3-methoxypyridine)
and zwitterionic (N-ethyl-3-oxypyridinium betaine and 3-pyridone) molecules were calculated by GIAO/B3LYP/6-31G(d,p) and IGLO/deMon/NMR approaches. Linear correlations between the calculated and experimental 1H and 13C NMR chemical shifts for 3-hydroxypyridine, 3-methoxypyridine, and N-ethyl-3-oxypyridinium betaine suggest that the 3-hydroxy tautomer is dominant in DMSO-d6. The lack of such a correlation for 3-pyridone indicates an absence of this species in DMSO-d6 solution.

References:

[1] K. Nakanishi, Ed., One-dimensional and Two-dimensional NMR Spectra by Modern Pulse Techniques, University Science Books, Sausalito, California, US (1990).
[2] P. Crews, J. Rodriguez, and M. Jaspars, Organic Structure Analysis, Oxford Univ. Press, New
York (1998).
[3] A. Bagno, Chem. Eur. J. 7,1651 (2001).
[4] S. L. Shapiro, K. Weinberg, and L. Freedman, J. Am. Chem. Soc. 81, 5140 (1959).
[5] A. Schmidt, Advances in Heterocyclic Chemistry, 85, 67 (2003).
[6] N. Dennis, A. R. Katritzky, and Y. Takeuchi, Angew. Chem. Int. Ed. 15, 1 (1976).
[7] J. Elguero, C. Marzini, A. R. Katritzky, and P. Linda, Advances in Heterocyclic Chemistry,
Supplement 1, The Tautomerism of Heterocycles, Eds.: A. R. Katritzky and A. J. Bolton, Academic Press, New York, 1976.
[8] D. Metzler and E. Snell, J. Am. Chem. Soc. 77, 2431 (1955).
[9] U. Vögli and W. Von Philipsborn, Org. Mag. Res. 5, 551 (1973).
[10] a) V. G. Malkin, O. L. Malkina, L. A. Eriksson, and D. R. Salahub, Theoretical and Computational Chemistry, vol. 1, Amsterdam, Elsevier (1995); b) D. R. Salahub, R. Fornier, P. Mlynarski, I. Papai, A. St-Amant, and J. Ushio in Density Functional Methods in Chemistry (Eds.: J. Labanowski, J. Andzelm), Springer, New York (1991); c) A. St-Amant and D. R. Salahub, Chem. Phys. Lett. 169, 387 (1990); d) V. G. Malkin, O. L. Malkin, M. E. Casido, and D. R. Salahub, J. Am.
Chem. Soc. 116, 5898 (1994); e) V. G. Malkin, O. L. Malkin, L. A. Erikson, and D. R. Salahub,
Modern Density Functional Theory: A Tool For Chemistry, Vol. 2 (Eds.: J. M. Seminario and
P. Politzer), Elsevier, Amsterdam, (1995); f) V. G. Malkin, O. L. Malkin, and D. R. Salahub,
Chem. Phys. Lett. 221, 91 (1994); g) V. G. Malkin, O. L. Malkin, and D. R. Salahub, J. Chem.
Phys. 105, 8793 (1996).
[11] a) R. Ditchfield, Mol. Phys. 27, 789 (1974); b) K. Wolinski, J. F. Hilton, and P. Pulay, J. Am.
Chem. Soc. 112, 8251(1990); c) B. Osmialowski, E. Kolehmainen, and R. Gawinecki, Magn.
Reson. Chem. 39, 334 (2001) andref. citedtherein.
[12] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
[13] C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).
[14] Gaussian 98, Revision A.10, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann,
J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas,
J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford,
J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, P. Salvador, J. J. Dannenberg,
D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz,
A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts,
R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe,
P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon,
E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA (2001).
[15] W. Kutzelnigg, U. Fleischer, and M. Schindler, NMR-Basic Principles and Progress, vol. 23,
Springer-Verlag, Heidelberg (1990).
[16] U. Ohms, H. Guth, and W. Tretmann, Z. Kristallogr. 159, 99 (1982).
[17] J. Almlöf, Å. Kvick, and I. Olovsson, Acta Cryst. B 27, 1201 (1971)